Project Icon

Virchow

自监督视觉模型实现病理图像顶尖性能

Virchow是通过1.5百万张病理学图像预训练的自监督视觉模型,适用于特征提取和多种计算病理学应用。采用ViT-H/14架构,具有32层和1280维度嵌入,优化于PyTorch和timm框架中高效运行,适合GPU混合精度模式。用户需遵守开源许可证,并可在HuggingFace平台获取。Virchow可根据具体数据集或应用需求进行细调整合。

HistoSSLscaling - 病理组织图像自监督学习新方法
GithubPhikonViT开源项目掩码图像建模组织病理学自监督学习
HistoSSLscaling项目开发了基于掩码图像建模的自监督学习方法,用于病理组织图像分析。该项目的Phikon模型在4000万张全癌种病理切片上预训练,在多项下游任务中表现出色。项目提供了预训练模型、代码和数据集特征,为计算病理学研究提供支持。
LViT - 结合语言和视觉Transformer的医学图像分割技术
GithubLViTVision Transformer医学图像分割开源项目数据集深度学习
LViT是一种创新的医学图像分割方法,融合了语言信息和视觉Transformer。该技术在QaTa-COV19、MosMedData+和MoNuSeg等多个数据集上展现出优异性能,大幅提升了分割精度。项目包含完整代码实现、数据准备指南、训练评估流程及详细实验结果。除常规任务外,LViT在结肠息肉和食管CT等特定领域分割中也表现出色。
CellViT - 基于Vision Transformer的细胞核分割与分类模型
CellViTGithubPanNuke数据集Vision Transformer开源项目深度学习细胞分割
CellViT是一种基于Vision Transformer的深度学习方法,用于数字化组织样本中的细胞核自动实例分割。该项目结合了预训练的Vision Transformer编码器和U-Net架构,在PanNuke数据集上取得了领先性能。通过引入加权采样策略,CellViT提高了对复杂细胞实例的识别能力。它能够快速处理千兆像素级全切片图像,并可与QuPath等软件集成,为后续分析提供定位化的深度特征。
hover_net - 病理图像中细胞核分割与分类的深度学习模型
GithubHoVer-Net图像分析开源项目深度学习病理学细胞核分割
HoVer-Net是一种用于病理图像细胞核分割和分类的深度学习模型。该模型通过计算细胞核像素到质心的距离来分离聚集细胞,并利用上采样分支进行细胞核类型分类。项目提供PyTorch实现,支持模型训练、图像处理和全幻灯片分析,并包含多个预训练权重。HoVer-Net在细胞核分析任务中表现出色,为数字病理学研究提供了重要工具。
SegVol - 突破性的通用交互式三维医学影像分割模型
3D建模CT扫描GithubSegVol人工智能医学图像分割开源项目
SegVol是一个创新的通用交互式三维医学影像分割模型,支持点、框和文本提示输入。该模型在96,000个CT扫描数据集上训练,可分割超过200个解剖类别。SegVol开源了推理代码、训练代码、模型参数以及预训练的ViT参数。通过内部和外部验证,SegVol展现出优秀的分割性能,为医学影像分析提供了新的解决方案。
prov-gigapath - 数字病理学全切片基础模型
GithubProv-GigaPath医学图像分析开源项目数字病理学深度学习预训练模型
Prov-GigaPath是一个基于真实世界数据开发的数字病理学全切片基础模型。它包含切片编码器和幻灯片编码器,支持切片级和幻灯片级任务。该模型已在Nature发表,并开源了预训练模型、代码和演示笔记本。研究人员可利用它探索数字病理学幻灯片数据的预训练和编码。该项目仅供研究使用,不适用于临床诊断。
vit_base_patch8_224.dino - 将自监督DINO方法应用于视觉变换器以增强图像特征提取能力
GithubHuggingfaceImageNetVision Transformer图像分类开源项目模型特征提取自监督学习
该项目利用Vision Transformer (ViT) 和自监督DINO方法进行图像特征提取,支持图像分类和嵌入应用。模型在ImageNet-1k数据集上进行了预训练,具有85.8M参数,能够处理224 x 224分辨率的图像。由于其参数利用效率高,该模型在大规模数据集上表现良好,适合精确特征提取的视觉任务,增强图像识别及分析能力。通过`timm`库可轻松实现模型调用和图像处理,满足多种计算机视觉应用需求。
FasterViT - 高效分层注意力的视觉transformer新突破
FasterViTGithub图像分类层级注意力机制开源项目目标检测视觉Transformer
FasterViT是一种创新的视觉transformer模型,采用分层注意力机制高效捕获短程和长程信息。在ImageNet分类任务中,FasterViT实现了精度和吞吐量的新平衡,无需额外训练数据即达到最先进水平。该项目提供多种预训练模型,适应不同计算资源和精度需求,支持任意分辨率输入,为目标检测、分割等下游任务提供灵活选择。
TransMorph_Transformer_for_Medical_Image_Registration - 基于Transformer的无监督医学图像配准方法
GithubPyTorchTransMorphTransformer医学影像配准开源项目深度学习
TransMorph是一个利用Transformer架构进行无监督医学图像配准的开源项目,结合了Vision Transformer和Swin Transformer技术。提供多个模型变体和多种损失函数,支持单模态和多模态配准,公开了训练脚本和预训练模型,并在MICCAI 2021 L2R挑战中表现出色。
HuatuoGPT-Vision - 大规模医疗视觉知识赋能多模态语言模型
GithubHuatuoGPT-VisionPubMedVision医学VQA数据集医学视觉知识多模态大语言模型开源项目
HuatuoGPT-Vision项目致力于增强多模态语言模型的医疗视觉理解能力。该项目推出了包含130万高质量医疗视觉问答对的PubMedVision数据集,显著提升了模型在医疗领域的多模态表现。研究团队基于此开发了HuatuoGPT-Vision-7B和34B两个版本的医疗多模态语言模型,在多项医疗视觉问答基准测试中均取得了优异成绩。这一项目不仅为医疗人工智能领域提供了宝贵的数据资源和先进模型,还有望推动医疗影像分析和诊断技术的进步。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号