Project Icon

wav2vec2_tiny_random

轻量级语音识别模型测试入门

使用简洁的代码示例来测试轻量级语音识别模型,展示如何利用Wav2Vec2ForCTC结合torchaudio进行验证。通过示例演示音频数据的加载、处理以及模型输出与损失的计算过程。适用于librispeech_asr简化版数据集,是理解语音识别模型基本原理的理想入门材料。

tacotron - 开源文字到语音合成系统,采用TensorFlow实现
GithubTacotronTensorFlow开源开源项目训练模型语音合成
Tacotron是基于TensorFlow的开源语音合成系统,能够直接将文本转换为语音。本项目独立实现了Google的论文'Tacotron: Towards End-to-End Speech Synthesis',虽然当前性能未及Google的演示,但已具备一定参考价值。支持包括LJ Speech和Blizzard 2012在内的多种语音数据集,并允许通过命令行调整和优化参数。项目还提供了预训练模型的下载与部署指南,便于用户快速开始使用及测试。
wav2vec2-xls-r-1b-ca-lm - 基于先进技术的加泰罗尼亚语语音识别模型
GithubHuggingfacewav2vec2-xls-r-1b-ca-lm开源项目数据集模型模型评估自动语音识别训练过程
此模型是在facebook/wav2vec2-xls-r-300m的基础上微调的,专注于加泰罗尼亚语自动语音识别。通过使用Mozilla Common Voice 8.0及其他数据集进行优化训练,该模型在加泰罗尼亚口音识别上展现出高效性能。适用于需要精准语音识别的场景,尽管资源稀缺的方言可能效果较差。模型精度得益于优化后的学习率和批量大小,是语音识别技术发展的重要里程碑。
TTS-Cube - 基于神经网络的端到端语音合成系统
GithubTTS-Cube开源项目神经网络端到端系统语音合成音频生成
TTS-Cube是一个基于神经网络的端到端语音合成系统,提供训练和部署TTS模型的完整流程。系统无需预对齐数据,仅通过字符或音素序列即可训练生成音频。它包含一个编码器模块,将输入序列转换为梅尔对数谱图,以及一个基于RNN的声码器模块。TTS-Cube采用轻量级架构和引导注意力技术,实现快速收敛。项目提供交互式演示、安装指南和训练实例。
distil-whisper - 快速高效的音频转录模型
Distil-WhisperGithub开源项目机器学习模型压缩自然语言处理语音识别
Distil-Whisper是OpenAI Whisper模型的蒸馏版本,速度提升6倍,模型规模缩小49%,同时保持了相近的准确性。该项目支持短语音和长语音转录,提供多个针对英语语音识别的高效模型。Distil-Whisper还可作为Whisper的辅助模型实现推测解码,在保证输出一致性的同时将速度提升2倍。
wav2vec2-xls-r-300m-ftspeech - 基于XLS-R-300m的丹麦语语音识别模型 使用FTSpeech数据集微调
FTSpeechGithubHuggingfaceXLS-R-300mwav2vec2丹麦语开源项目模型语音识别
该丹麦语自动语音识别模型基于wav2vec2-xls-r-300m在FTSpeech数据集上微调。模型利用1,800小时丹麦议会演讲转录数据训练,在Danish Common Voice 8.0和Alvenir测试集上分别实现17.91%和13.84%的词错误率(WER)。这一性能表明,该模型为丹麦语语音识别任务提供了有效的解决方案。
wespeaker-voxceleb-resnet34-LM - 采用预训练的Wespeaker嵌入模型优化音频说话人识别
GithubHuggingfacepyannote.audio声纹识别开源项目模型深度学习音频处理
这个开源项目集成了WeSpeaker的wespeaker-voxceleb-resnet34-LM预训练模型,适用于pyannote.audio,提升说话人识别和验证的效率。可执行基础和高级功能,如GPU加速、音频片段嵌入提取和滑动窗口特征识别。兼容pyannote.audio 3.1及更高版本,以提供更加快速和可靠的音频处理方案。
speech-to-text-benchmark - 开源语音识别基准测试框架对比多家主流引擎
Github基准测试开源项目模型大小计算效率识别准确率语音转文本
该项目提供了一个开源的语音识别基准测试框架,对比了Amazon、Azure、Google等主流云服务以及OpenAI Whisper、Picovoice等引擎的性能。框架使用LibriSpeech、TED-LIUM和Common Voice数据集,评估词错率、计算效率和模型大小等指标。测试结果客观展示了各引擎在准确度和资源消耗方面的表现,为选择语音识别解决方案提供了参考依据。
Bert-VITS2 - 多语言BERT驱动的语音合成模型
Bert-VITS2FishAudioGithubMassTTSTTSVITS开源项目
Bert-VITS2项目融合了多语言BERT和先进的自回归TTS模型,提供高品质的语音合成。此项目参考了MassTTS等开源项目,并推荐使用Fish-Speech。详情和演示请参见视频链接和文档,项目强调中文用户需求和法律合规,禁止违规用途。
Whisper-Finetune - 语音识别模型的高效微调与加速
GithubWhisper中文识别加速推理开源项目模型微调语音识别
Whisper-Finetune项目致力于优化OpenAI的Whisper语音识别模型。该项目采用Lora技术进行微调,支持多种数据类型的训练,并通过CTranslate2和GGML实现加速推理。此外,项目提供了跨平台应用和服务器部署方案,为语音识别应用开发提供了全面支持。
Whisper-transcription_and_diarization-speaker-identification- - 使用OpenAI Whisper进行音频转录和说话人识别的完整教程
GithubOpenAIWhisperdiarization人工智能开源项目音频转录
本教程详细介绍如何使用OpenAI Whisper进行音频转录和说话人识别,并结合pyannote-audio进行对话分析。学习如何准备音频、区分说话人,并将结果与转录文本匹配,实现智能音频分析。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号