Project Icon

c4ai-command-r-plus-GGUF

GGUF权重支持与加载优化简介

在Command R+ GGUF项目中,发现GGUF权重支持的新特性,并学习使用release b2636特性进行优化加载。imatrix矩阵的使用简化了权重合并过程,提高了使用效率。基于CohereForAI/c4ai-command-r-plus基础模型,项目在wikitext-2-raw数据集中展示了低混乱度的表现,用户可以通过实例化命令快速开始使用项目功能。

c4ai-command-r-plus - 多语言高级模型实现复杂任务自动化
C4AI Command R+GithubHuggingface多语言支持开源项目文本生成模型生成增强检索非商业用途
C4AI Command R+ 是拥有104B参数的多语言高级模型,适用于复杂任务自动化。支持多步工具使用和检索增强生成(RAG),优化推理、总结及问答等功能。在包括简体中文等10种语言中表现良好。可通过Hugging Face Space试用,需安装特定transformers库。非量化版本支持与bitsandbytes结合实现量化。此外,在开放LLM排行榜中表现优异,具备先进的多语言和工具化能力。
CodeLlama-13B-Instruct-GGUF - 探索GGUF在高效处理与兼容性上的独特优势
CodeLlama 13B InstructGPU加速GithubHuggingface开源项目文本生成模型模型量化编程助手
CodeLlama 13B Instruct项目引入了由llama.cpp团队开发的GGUF格式,提供了比GGML更优的解决方案。在标记分词、特殊标记及元数据支持方面有所改进,并提供多种量化模型选项,从Python到Web UI的广泛兼容性及GPU加速支持,使其成为性能与便捷性的优秀结合。
c4ai-command-r-08-2024-GGUF - c4ai-command-r-08-2024模型的量化方法解析
CohereGithubHugging FaceHuggingfaceLlamacpp开源项目模型模型下载量化
该项目利用llama.cpp工具对c4ai-command-r-08-2024模型进行量化,提供多种文件选择以满足不同计算需求。用户可参考下载和使用指南,根据GPU和RAM容量选择合适的量化格式,以优化性能。项目还提供性能图表和I-quant与K-quant选择建议,旨在帮助用户进行有效配置。这些量化文件适合在LM Studio中运行,强调高效推理和广泛适用性。
MiniCPM-Llama3-V-2_5-gguf - GGUF格式大语言模型轻量化推理工具
GithubHuggingfaceMiniCPMllama.cppollama人工智能开源项目模型模型部署
MiniCPM-Llama3-V 2.5 GGUF是一个针对大语言模型轻量化部署的优化模型文件。通过llama.cpp和ollama框架,开发者可实现模型的本地化推理。项目提供完整的部署文档,支持高效且便捷的本地化实现
Open_Gpt4_8x7B_v0.2-GGUF - 提供多格式兼容量化模型,提升推理效率
GGUFGithubHuggingfaceOpen Gpt4 8X7B V0.2rombo dawg开源项目模型模型兼容性量化
此项目提供GGUF格式的多精度量化模型文件,旨在优化CPU和GPU的推理效率。作为GGML的替代,GGUF与多种第三方UI和库兼容,支持多平台AI模型的高效运行。项目包含2至8位量化模型以满足不同精度与内存要求,适合多种场景需求。通过详细的下载指导,用户能快速找到适合的模型文件,并利用llama.cpp、text-generation-webui等高性能运行时实现模型在不同硬件上的高效推理。
c4ai-command-r-v01 - 多语言生成和推理的高效大型语言模型
C4AI Command-RGithubHuggingface多语言生成工具使用开源项目文档引用模型生成模型
C4AI Command-R是一款35亿参数的生成模型,适用于推理、摘要和问答等多种场景,具备强大的多语言生成能力,支持包括中文在内的10种语言。该模型在Hugging Face等平台提供实验机会,其开放权重设计方便多重用途的使用。采用优化的Transformer架构,并通过有监督微调以符合人类优选方式。通过特定的提示模板,模型能有效执行引用生成,提高回答的准确度和效用。
Rombos-LLM-V2.6-Qwen-14b-Q8_0-GGUF - GGUF格式量化版大语言模型支持本地化高性能部署
GGUFGithubHuggingfaceRombos-LLMllama.cpp代码部署开源项目模型模型转换
本项目是Rombos-LLM-V2.6-Qwen-14b模型的GGUF格式版本,专为llama.cpp框架优化。提供详细的本地部署指南,包括brew安装和源码编译方法,支持命令行和服务器运行模式。基于transformers库开发,采用Apache-2.0许可证,适合需要在本地环境高效运行大型语言模型的应用场景。
CodeLlama-13B-GGUF - GGUF格式的创新特点与适用范围
CodeLlama 13BGithubHuggingfaceMeta开源项目机器学习模型模型格式量化
Meta推出的GGUF格式替代了GGML,优化了编码生成的效能和兼容性。它增强了标记处理和元数据支持,并适用于多种程序和库,如llama.cpp和text-generation-webui。这种格式推动了编码模型的发展,提供了便于GPU加速和降低内存需求的量化模型,提升了开发者的灵活性和解决方案质量。
Llama-3.2-1B-Instruct-Q8_0-GGUF - 高性能指令型大语言模型的GGUF格式版本
GGUF格式GithubHuggingfaceLlama 3.2Metallama.cpp大语言模型开源项目模型
Llama-3.2-1B-Instruct模型的GGUF格式版本专为高效推理而设计。该版本保留了原始模型的指令遵循能力,同时优化了推理速度和内存使用。通过llama.cpp,用户可在多种硬件上部署此模型,实现快速、资源友好的本地AI推理。这款1B参数的轻量级模型适用于个人电脑和边缘设备,为广泛应用场景提供了便利的AI解决方案。
Phind-CodeLlama-34B-v2-GGUF - 利用GGUF格式提升模型性能,兼容多平台GPU加速
CodeLlamaGPU加速GithubHuggingface开源项目文本生成格式转换模型模型量化
Phind's CodeLlama 34B v2采用GGUF格式,由llama.cpp团队在2023年8月21日推出替代GGML。GGUF实现了更优的标记化及特殊标记支持,并且具有可扩展性。兼容多种第三方界面与库(如text-generation-webui和KoboldCpp),并支持GPU加速。量化模型在保持高质量的同时降低了资源占用,适用多种场景,建议使用Q4_K_M与Q5_K_M模型以实现最佳性能及质量平衡。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号