Project Icon

S-PubMedBert-MS-MARCO

医疗文本信息检索专用BERT模型

S-PubMedBert-MS-MARCO是一个针对医疗和健康文本领域优化的信息检索模型。它基于PubMedBERT,并通过MS-MARCO数据集微调,可将文本映射为768维向量。该模型适用于语义搜索和文本聚类,支持Sentence-Transformers和HuggingFace Transformers框架,为医疗文本分析提供了有效工具。

TinySapBERT-from-TinyPubMedBERT-v1.0 - 微型生物医学实体表示模型TinySapBERT
GithubHuggingfaceKAZU框架TinyPubMedBERTTinySapBERT开源项目模型生物医学实体表示语言模型
TinySapBERT是一个微型生物医学实体表示模型,基于TinyPubMedBERT和SapBERT方法开发。作为KAZU框架的组成部分,它为生物医学命名实体识别提供高效解决方案。该模型旨在提升生物医学文本分析任务的性能,为研究人员提供有力工具。
cocodr-base-msmarco - 零样本文本检索与分布鲁棒学习模型
BEIRCOCO-DRGithubHuggingface向量相似度开源项目模型模型预训练自然语言处理
COCODR是一个基于BERT-base架构的文本检索模型,通过BEIR语料库预训练和MS MARCO数据集微调而成。模型采用对比学习和分布鲁棒学习方法,解决零样本密集检索中的分布偏移问题。借助HuggingFace transformers框架,模型可用于文本嵌入和相似度计算。
bi-encoder_msmarco_bert-base_german - 德语语义搜索和文档检索的先进模型 基于MSMARCO数据集训练
BERTGithubHuggingfaceMSMARCO信息检索开源项目文档检索模型语义搜索
这个模型专为德语语义搜索和文档检索设计。它使用机器翻译的MSMARCO数据集训练,结合硬负样本和Margin MSE损失,在非对称搜索任务中达到了先进水平。模型在germandpr-beir基准测试的NDCG指标上表现出色,优于其他多语言模型。它与Sentence Transformer库兼容,可广泛应用于各类信息检索任务。
BiomedVLP-CXR-BERT-specialized - 胸部X光领域专用语言模型 优化生物医学视觉语言处理
CXR-BERTGithubHuggingface医疗影像多模态学习开源项目模型胸部X光自然语言处理
BiomedVLP-CXR-BERT-specialized是专为胸部X光领域开发的语言模型。通过优化词汇表、创新预训练方法、权重正则化和文本增强技术,该模型在放射学自然语言推理和掩码语言模型预测等任务中表现优异。它还能应用于零样本短语定位和图像分类等视觉-语言处理任务。此外,该模型与ResNet-50图像模型联合训练,可用于短语定位。作为生物医学视觉-语言处理研究的重要工具,BiomedVLP-CXR-BERT-specialized为相关领域提供了新的可能性。
MedEmbed-small-v0.1 - 模型在医疗信息检索和分类中的应用
GithubHuggingfaceMedEmbed临床嵌入信息检索医疗嵌入句子变换器开源项目模型
项目专注于利用组合数据集进行信息检索与分类操作,如MedicalQARetrieval、NFCorpus和PublicHealthQA等。模型的评估指标包括精确率、召回率和F1-分数,在多任务如医疗问答和亚马逊评论分类中展现了良好性能。分类和检索任务测试结果显示,该模型在精度和性能上表现优异,为医疗嵌入和临床信息检索提供了有效的解决方案。
msmarco-MiniLM-L12-en-de-v1 - 基于MS MARCO的英德双语文本重排序模型
GithubHuggingfaceMS Marco信息检索开源项目德英翻译模型自然语言处理跨语言检索模型
基于MS MARCO数据集开发的英德双语跨编码器模型,主要用于文本段落重排序。模型在TREC-DL19评测中NDCG@10分别达到72.94(英-英)和66.07(德-英),在GermanDPR数据集上MRR@10为49.91。支持SentenceTransformers和Transformers框架,处理速度为900对文档/秒,适用于跨语言信息检索场景。
MedCPT-Cross-Encoder - 基于PubMed数据的医学文献智能排序模型
GithubHuggingfaceMedCPT-Cross-Encoder医学信息检索开源项目文本排序模型深度学习自然语言处理
MedCPT-Cross-Encoder是一款专注于医学文献检索的跨编码器模型。该模型利用PubMed搜索日志进行预训练,能够根据查询对文章进行智能排序,为生物医学领域提供高效的信息检索服务。由美国国立卫生研究院开发的MedCPT-Cross-Encoder在零样本生物医学信息检索任务中表现出色,为研究人员和医疗专业人士提供了强大的文献筛选工具。
msmarco-MiniLM-L12-cos-v5 - 用于语义搜索的句子转换和嵌入模型
GithubHuggingfaceMS MARCOMiniLM句子转换器开源项目模型自然语言处理语义搜索
msmarco-MiniLM-L12-cos-v5是一个专为语义搜索设计的句子转换模型,能将文本映射到768维向量空间。该模型在MS MARCO数据集上训练,支持通过sentence-transformers和HuggingFace Transformers两种方式使用。它生成规范化嵌入,适用于多种相似度计算方法,可用于开发高效的语义搜索应用。
BioBERT-mnli-snli-scinli-scitail-mednli-stsb - 基于BioBERT的多领域句子嵌入模型
BioBERTGithubHuggingfacesentence-transformers嵌入向量开源项目模型自然语言处理语义相似度
该项目是一个基于BioBERT的句子嵌入模型,通过多个领域数据集训练而成。模型能将文本映射至768维向量空间,适用于聚类和语义搜索等任务。它不仅在生物医学领域表现出色,还可应用于其他文本分析场景。模型支持sentence-transformers和HuggingFace Transformers两种调用方式,为用户提供了便捷的使用体验。
biomed_roberta_base - RoBERTa衍生模型在生物医学NLP任务中展现优异性能
GithubHuggingfaceRoBERTa开源项目模型生物医学自然语言处理语言模型预训练
BioMed-RoBERTa-base是一个针对生物医学领域优化的语言模型,基于RoBERTa-base架构,通过对268万篇科学论文全文的持续预训练而成。该模型在文本分类、关系提取和命名实体识别等多项生物医学NLP任务中表现出色,比基础RoBERTa模型有显著提升。这为生物医学领域的自然语言处理研究提供了一个强大的预训练工具。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号