Project Icon

speech-separation-ami-1.0

基于pyannote.audio的多说话人语音分离与分类系统

这是一个基于pyannote.audio的开源项目,实现了同步的说话人分类和语音分离功能。系统接收16kHz采样率的单声道音频,输出说话人分类结果和分离后的语音。该项目由Joonas Kalda基于AMI数据集开发,适用于实际多说话人场景。项目提供简洁的Python接口,支持GPU加速和内存处理,为语音分析提供了实用解决方案。

speaker-diarization-3.0 - 基于pyannote.audio的多功能说话人分离模型
GithubHuggingfacepyannote.audio开源项目模型深度学习语音处理说话人分类音频分析
该模型基于pyannote.audio 3.0.0训练,可处理16kHz单声道音频并输出说话人分离结果。经多个数据集基准测试,表现优异。支持GPU加速实时处理,提供进度监控和说话人数量控制等功能。适用于需要高性能说话人分离的研究和开发场景。
pyannote-audio - 先进的开源语音说话人分离工具包
GithubPyTorchpyannote.audio开源工具包开源项目语音处理说话人分类
pyannote.audio是基于PyTorch的开源语音说话人分离工具包,提供先进预训练模型和管道。支持针对特定数据集微调,实现多GPU训练,采用Python优先API。在多项基准测试中表现优异,并提供全面文档和教程,包括模型应用、训练和自定义指南。适用于需要高性能说话人分离功能的音频处理项目。
speaker-diarization-3.1 - 提升语音处理的开源说话人分区技术
GithubHuggingfacepyannote开源项目模型深度学习语音识别说话人分离音频处理
该开源语音分区模型应用了纯PyTorch,替换了存在问题的onnxruntime,以简化部署流程并可能提高推断效率。此工具接受16kHz的单声道音频输入,能够自动混合多声道音频为单声道,并支持音频的自动重采样。其高效性能允许在CPU或GPU上运行,同时支持从内存加载音频以加快处理速度。
speaker-diarization - 高效实时的开源语音说话人分割系统
GithubHuggingfacepyannote开源项目机器学习模型语音识别说话人分离音频处理
pyannote/speaker-diarization是一个高效的开源说话人分割系统,支持指定说话人数量等高级功能。该系统在多个基准数据集上实现较低的分割错误率,无需人工调整。其实时因子约为2.5%,可快速处理大量音频。项目还提供详细的技术报告和适配指南,方便用户根据需求进行调整。
overlapped-speech-detection - 开源重叠语音检测工具实现多人同时发言识别
GithubHuggingfacepyannote声纹分割开源项目模型语音识别语音重叠检测音频处理
开源重叠语音检测工具overlapped-speech-detection专注于识别音频中的多人同时发言片段,通过Python API接口快速部署实现。该工具基于神经网络技术,支持多种数据集训练,可应用于会议记录、课堂互动、多人访谈等场景的语音分析。
speaker-segmentation-fine-tuned-callhome-eng - 基于Callhome数据集微调的英语语音说话人分割开源模型
CallhomeGithubHuggingfacepyannote开源项目机器学习模型说话人分割音频处理
这是一个基于pyannote/segmentation-3.0在英语Callhome数据集上微调的说话人分割模型。模型在评估集上达到0.4602的损失率和0.1828的DER值。它可以集成到pyannote说话人分割流程中,支持GPU加速,适用于高质量说话人分割任务。模型提供了使用示例代码,方便快速上手。
voice-activity-detection - 基于pyannote.audio的开源语音活动检测模型
GithubHuggingfacepyannote声音分割开源项目模型语音活动检测说话人分类音频处理
该项目提供基于pyannote.audio 2.1的开源语音活动检测模型,可精确识别音频中的语音片段。支持AMI、DIHARD和VoxConverse等数据集,适用于多种应用场景。用户通过简单的Python代码即可调用预训练模型,实现高效的语音检测。这一工具为语音分析和处理提供了可靠基础,适用于学术研究及商业应用。
segmentation-3.0 - 多说话者分段和语音活动检测的开源模型
GithubHuggingfacepyannote.audio开源模型开源项目扬声器分割模型语音活动检测重叠语音检测
Powerset编码为核心的开源模型,结合pyannote.audio 3.0,实现多说话者分段以及语音活动和重叠检测,适用于多种语音会议场景。
segmentation - 利用Pyannote开源工具进行语音分割与识别
GithubHuggingfacepyannote开源项目模型语音活动检测重分段重叠语音检测音频
探索使用Pyannote开源项目进行高效的语音分割,提高语音活动、重叠语音检测及重分段的性能。详细的使用说明和代码示例使音频处理过程更加准确快速,广泛适用于学术研究和商业应用。同时,Pyannote还为用户提供科学咨询服务和资助选项支持。
wespeaker-voxceleb-resnet34-LM - 采用预训练的Wespeaker嵌入模型优化音频说话人识别
GithubHuggingfacepyannote.audio声纹识别开源项目模型深度学习音频处理
这个开源项目集成了WeSpeaker的wespeaker-voxceleb-resnet34-LM预训练模型,适用于pyannote.audio,提升说话人识别和验证的效率。可执行基础和高级功能,如GPU加速、音频片段嵌入提取和滑动窗口特征识别。兼容pyannote.audio 3.1及更高版本,以提供更加快速和可靠的音频处理方案。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号