Project Icon

rl

开源强化学习库TorchRL

TorchRL是专为PyTorch设计的开源强化学习库,提供高效的研究性能。它具备完整Python接口、模块化、定制化及强大扩展性,配备详尽文档和测试,确保用户快速上手且使用可靠。此外,TorchRL包括多种可复用功能,适用于成本、回报处理和数据管理,是开展强化学习研究与应用的理想工具。

torchsde - 提供GPU支持的随机微分方程求解器
GANGithubNeural SDEPyTorchSDE solverstochastic differential equation开源项目
这个库提供了支持GPU和高效反向传播的随机微分方程(SDE)求解器。其使用Python和PyTorch开发,安装方便,并附有丰富的示例。用户可以通过简单的代码示例快速入门,并通过文档进一步学习。除了基础功能外,还包括潜在SDE和GAN中的SDE等高级应用示例。适用于在高性能计算环境中执行复杂SDE模型的研究人员和开发者。
morl-baselines - 多目标强化学习算法库 支持单策略和多策略实现
GithubMO-GymnasiumMORL-BaselinesPyTorch多目标强化学习开源项目算法库
MORL-Baselines是一个多目标强化学习算法库,提供多种PyTorch实现。该项目遵循MO-Gymnasium API,支持单策略和多策略算法,适用于SER和ESR标准。特点包括自动性能报告、代码规范和自动测试。实现了GPI-LS、MORL/D等多种算法,支持连续和离散观察/动作空间,为MORL研究和基准测试提供有力支持。
PantheonRL - 多智能体强化学习训练和测试的模块化框架
GithubPantheonRLStableBaselines3多智能体强化学习开源项目自适应训练训练框架
PantheonRL是一个用于多智能体强化学习环境训练和测试的开源框架。它提供模块化和可扩展的功能,支持智能体策略训练、微调、动态配对等。基于StableBaselines3构建,PantheonRL采用去中心化训练方法,为每个智能体配备独立的重放缓冲区和更新算法。此外,它还提供Web用户界面,便于进行轻量级实验和原型设计,支持自我对弈、交叉对弈、循环训练和微调等多种训练模式。
stable-baselines3-contrib - 实验性强化学习算法和工具
GithubGym WrappersStable-Baselines3rl算法sb3-contrib开源项目文档
提供最新的实验性强化学习算法和工具,保持稳定基线风格和文档,适用于更广泛的实际应用需求。包括增强随机搜索(ARS)和量化回归DQN(QR-DQN)等算法,以及适用于Gym环境的包装器。适合需要超越主存储库限制且仍需高可靠性的用户。
xuance - 多框架支持的深度强化学习算法库
GithubXuanCe多框架支持开源库开源项目深度强化学习算法实现
XuanCe是一个开源的深度强化学习算法库,支持PyTorch、TensorFlow和MindSpore等多种框架。它兼容单智能体和多智能体任务,提供丰富的算法实现。XuanCe设计模块化,易于学习和使用,运行速度快。支持经典控制、Box2D、MuJoCo、Atari等多种环境,为研究和开发提供全面的深度强化学习工具。
purejaxrl - JAX强化学习框架实现千倍性能提升
GithubJaxPureJaxRL并行训练开源项目强化学习性能优化
PureJaxRL是一个端到端JAX强化学习框架,将整个训练流程(包括环境)实现在JAX中。通过JIT编译和避免CPU-GPU数据传输,在GPU上并行运行多个智能体时,性能比PyTorch实现提升1000倍以上。框架支持使用JAX的jit、vmap等功能优化训练流程,实现高效并行训练、快速超参数调优和元进化算法探索。
pytorch3d - 基于PyTorch的高效3D计算机视觉研究库
3D计算机视觉GithubPyTorch3D三角网格可微分渲染开源项目深度学习
PyTorch3D是一个基于PyTorch的3D计算机视觉研究库,提供高效、可复用的组件。主要功能包括三角网格操作、可微分渲染和隐式表示框架。该库与深度学习方法无缝集成,支持异构数据批处理、可微分运算和GPU加速。PyTorch3D已应用于多个研究项目,并提供全面的教程和文档。
LibMTL - 基于PyTorch的多任务学习开源库,支持多种架构和优化策略
GithubLibMTLPyTorch多任务学习开源库开源项目算法
LibMTL是一个基于PyTorch的开源库,专为多任务学习(MTL)设计。它提供了一致的代码库和评估流程,支持多种架构和优化策略,涵盖多个领域的基准数据集。LibMTL采用模块化设计,允许用户灵活添加自定义组件或调整现有算法,方便开发新策略或应用于新场景。详尽的文档确保不同经验水平的开发者都能轻松使用。
torchrec - 旨在提供大规模推荐系统所需的常见稀疏性和并行性原语的PyTorch库
CUDAFBGEMMGithubPyTorchTorchRec开源项目推荐系统
TorchRec是一个专为大规模推荐系统设计的PyTorch库,提供稀疏性和并行性解决方案。它支持多种嵌入表分片策略,并能自动优化分片计划。通过流水线训练和优化内核,提高模型性能。还支持量化训练和推理,包含多个验证的模型架构和数据集示例,适用于需要高性能和扩展性的推荐系统项目。
openai_lab - 提升强化学习效率的实验框架,兼容OpenAI Gym、Tensorflow和Keras
GithubKerasOpenAI GymOpenAI LabTensorflow开源项目强化学习
OpenAI Lab提供统一的强化学习环境和代理接口,内置主要强化学习算法。用户可轻松进行大量超参数优化实验,自动生成日志、图表和分析报告。实验设置采用标准化JSON格式,确保实验可重复且易于比较。支持自动分析实验结果,帮助选择最佳解决方案,专注于强化学习的关键研究,如算法、策略、记忆和参数调优。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号