Project Icon

rubert-base-cased-russian-sentiment

基于RuBERT的俄语短文本情感分析模型

这是一个基于RuBERT的俄语情感分析模型,专门用于短文本的多类别情感分类。模型支持中性、积极和消极三种情感标签,可通过Python代码轻松调用。它在多个俄语数据集上进行了微调,涵盖新闻、评论和社交媒体文本。该模型为需要进行俄语文本情感分析的开发者和研究人员提供了一个实用的工具。

rubert-tiny2 - 优化的俄语自然语言处理模型
BERTGithubHuggingface俄语模型句子嵌入开源项目文本相似度模型自然语言处理
作为rubert-tiny的改进版本,rubert-tiny2是一个精简的俄语BERT编码器。它拥有更大的词汇表和更长的序列支持,能更好地逼近LaBSE嵌入效果。该模型可直接用于生成句子嵌入或进行下游任务微调,适用于短文本KNN分类等应用场景。通过与transformers和sentence_transformers库的无缝集成,rubert-tiny2为俄语自然语言处理任务提供了简便而强大的工具。
ruBert-base - 专为俄语遮蔽填充任务优化的Transformer预训练语言模型
GithubHuggingfacePyTorchTransformersruBert开源项目模型自然语言处理语言模型
ruBert-base是一个专为俄语遮蔽填充任务优化的预训练语言模型。该模型基于Transformer架构,由SberDevices团队开发,采用BPE分词器,词典大小12万token,模型参数量1.78亿。模型使用30GB训练数据,是俄语自然语言处理领域的重要研究成果。ruBert-base遵循Apache-2.0许可证,为俄语NLP应用提供了强大的基础支持。
ruRoPEBert-e5-base-2k - 俄语句子编码模型支持长上下文和高效注意力机制
CulturaXGithubHuggingfaceTransformersruRoPEBert俄语句向量模型开源项目模型
ruRoPEBert是Tochka AI团队基于RoPEBert架构开发的俄语句子编码模型。该模型在CulturaX数据集上训练,支持2048个token的上下文,并可扩展。模型集成高效注意力机制和平均池化层,易于使用。在encodechka基准测试中,ruRoPEBert的S+W评分领先其他模型。此外,它还支持分类任务,并可通过RoPE缩放扩展上下文窗口。
russian_toxicity_classifier - 基于BERT的俄语有毒评论识别模型
BERTGithubHuggingface俄语开源项目文本分类模型毒性评论检测自然语言处理
russian_toxicity_classifier是一个基于BERT的俄语有毒评论分类模型,通过微调Conversational RuBERT训练而成。该模型使用2ch.hk和ok.ru的合并数据集,在测试集上实现97%的准确率。它可轻松集成到Python项目中,用于识别和分类俄语文本的毒性。这一开源工具为研究人员和开发者提供了有效应对在线交流中有毒内容的解决方案。
distilrubert-base-cased-conversational - 经过蒸馏的俄语对话模型 提升速度减少参数
DistilRuBERTGithubHuggingface俄语模型开源项目模型模型压缩知识蒸馏自然语言处理
distilrubert-base-cased-conversational是一个经过知识蒸馏的俄语对话模型,基于RuBERT开发。该模型在保持性能的同时,将参数量减少24%,显著提升了推理速度。它在多种俄语对话数据集上训练,适用于广泛的对话场景。与原始RuBERT相比,该模型在CPU和GPU上均实现了更快的处理速度,为需要高效俄语对话处理的应用提供了优秀选择。
cross-encoder-russian-msmarco - 高效的俄文跨编码器模型用于信息检索
DeepPavlov/rubert-base-casedDiTy/cross-encoder-russian-msmarcoGithubHuggingface信息检索句子嵌入开源项目文本分类模型
此开源模型基于DeepPavlov/rubert-base-cased,并经过MS-MARCO数据集优化,专用于俄语信息检索,支持高效的查询和段落相关性排序。通过安装sentence-transformers可直接使用,也可通过HuggingFace Transformers扩展文本分类功能,适合需处理俄语复杂文本的用户。
distilrubert-small-cased-conversational - 小型化俄语对话模型提升推理速度
DistilRuBERTGithubHuggingface俄语模型开源项目模型模型压缩知识蒸馏自然语言处理
distilrubert-small-cased-conversational是一个经过知识蒸馏的小型俄语对话模型。它基于OpenSubtitles、Dirty、Pikabu等多种语料库训练,在保持性能的同时显著提高了推理速度。该模型在分类、命名实体识别和问答等NLP任务中表现出色,同时大幅减小了模型体积,适用于需要高效处理俄语自然语言的应用场景。
hubert-large-speech-emotion-recognition-russian-dusha-finetuned - HuBERT模型在俄语语音情感识别上的应用与优化
GithubHuBERTHuggingface俄语开源项目微调模型语音情感识别预训练模型
该项目利用DUSHA数据集对HuBERT模型进行微调,实现了俄语语音情感识别。经优化后的模型在测试集上表现突出,准确率达0.86,宏F1分数为0.81,超越了数据集基准。模型能够识别中性、愤怒、积极、悲伤等情绪类型。项目还提供了简洁的使用示例代码,便于研究人员和开发者将其集成到语音情感分析任务中。
sentiment-roberta-large-english-3-classes - 基于RoBERTa的英文情感分析模型,精确分类社交媒体情感
GithubHuggingfaceRoBERTa准确率开源项目情感分析模型社交媒体
该模型使用RoBERTa进行三类情感分类(正面、中性、负面),特别适合社交媒体文本。通过5,304条社交媒体帖子进行微调,达到了86.1%的准确率。可通过transformers库轻松集成,提高文本分类的精准性和效率。
emotion-english-distilroberta-base - DistilRoBERTa英文文本情感分析模型
DistilRoBERTaGithubHugging FaceHuggingface开源项目情感分类机器学习模型自然语言处理
该模型基于DistilRoBERTa-base微调,用于英文文本情感分析。可预测7种情绪:愤怒、厌恶、恐惧、快乐、中性、悲伤和惊讶。训练数据来自Twitter、Reddit等6个多样化数据集。提供简单的3行代码使用方法,适用于单个文本和完整数据集分析。模型在平衡数据集上的评估准确率为66%,远高于随机基准。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号