Project Icon

russian_toxicity_classifier

基于BERT的俄语有毒评论识别模型

russian_toxicity_classifier是一个基于BERT的俄语有毒评论分类模型,通过微调Conversational RuBERT训练而成。该模型使用2ch.hk和ok.ru的合并数据集,在测试集上实现97%的准确率。它可轻松集成到Python项目中,用于识别和分类俄语文本的毒性。这一开源工具为研究人员和开发者提供了有效应对在线交流中有毒内容的解决方案。

Text-Moderation - 基于Deberta-v3的多分类文本审核系统
AutotrainDeBERTaGithubHuggingface内容分类开源项目文本审核模型自然语言处理
Text-Moderation采用Deberta-v3架构开发的文本分类模型,通过九类标签对文本内容进行审核分类。模型可识别包括性内容、仇恨言论、暴力描述、骚扰行为和自残倾向等敏感信息,并为每个类别提供概率评分。该模型实现了75%的分类准确率,主要支持英语文本的审核工作,可应用于内容审核和文本管理场景。
bert-turkish-text-classification - BERT土耳其语文本分类模型支持7大类别
BERTGithubHuggingfaceTurkish开源项目文本分类机器学习模型自然语言处理
BERT土耳其语文本分类模型通过微调Turkish BERT预训练模型而来,利用TTc4900数据集训练出支持7个类别的分类能力。涵盖世界、经济、文化等领域,开发者可借助Transformers库快速部署,实现土耳其语文本的高效分类。
hubert-large-speech-emotion-recognition-russian-dusha-finetuned - HuBERT模型在俄语语音情感识别上的应用与优化
GithubHuBERTHuggingface俄语开源项目微调模型语音情感识别预训练模型
该项目利用DUSHA数据集对HuBERT模型进行微调,实现了俄语语音情感识别。经优化后的模型在测试集上表现突出,准确率达0.86,宏F1分数为0.81,超越了数据集基准。模型能够识别中性、愤怒、积极、悲伤等情绪类型。项目还提供了简洁的使用示例代码,便于研究人员和开发者将其集成到语音情感分析任务中。
sbert_large_mt_nlu_ru - 大规模多任务俄语句子嵌入模型
BERTGithubHuggingface俄语模型句子嵌入多任务学习开源项目模型自然语言处理
这是一个基于BERT架构的大规模多任务模型,用于生成俄语句子嵌入。模型采用平均池化策略处理token embeddings,已完成Russian SuperGLUE基准测试验证。通过HuggingFace模型库可实现多句俄语文本的嵌入计算。该模型由SberDevices团队开发,致力于提升俄语自然语言处理能力。
bert-classification-tutorial - BERT与Transformers库实现的新闻文本分类项目
BERTGithub开源项目文本分类深度学习自然语言处理预训练语言模型
这是一个基于BERT模型的现代化文本分类实现项目。项目采用最新的Python、PyTorch和Transformers库,为自然语言处理任务提供了高质量模板。完整流程涵盖数据准备、模型训练和评估,并具有清晰的代码结构和详细说明。虽然主要针对livedoor新闻语料库的分类任务,但也易于适应其他文本分类需求。
robust-sentiment-analysis - 使用distilBERT的情感分析模型,实现对社交媒体和客户反馈的精确分析
GithubHuggingfacedistilBERT合成数据客户反馈开源项目情感分析模型社交媒体分析
模型基于distilBERT结构并利用合成数据训练,可精确解析社交媒体、客户反馈和产品评价的情感变化。适用于品牌监测、市场研究和客户服务优化,支持五个情感分类,准确率达95%。帮助企业有效识别用户情绪动向。
politicalBiasBERT - BERT微调模型实现政治倾向文本自动分类
BERTGithubHuggingface开源项目政治偏见文本分类机器学习模型自然语言处理
politicalBiasBERT是一个基于BERT模型微调的政治倾向分析工具。该模型通过大量政治文本训练,能够自动将输入文本分类为左派、中立或右派。研究人员和开发者可使用简单的Python代码调用此模型,快速分析文本的政治倾向。这一工具为政治文本分析和舆情研究提供了有力支持。
rubert-tiny2 - 优化的俄语自然语言处理模型
BERTGithubHuggingface俄语模型句子嵌入开源项目文本相似度模型自然语言处理
作为rubert-tiny的改进版本,rubert-tiny2是一个精简的俄语BERT编码器。它拥有更大的词汇表和更长的序列支持,能更好地逼近LaBSE嵌入效果。该模型可直接用于生成句子嵌入或进行下游任务微调,适用于短文本KNN分类等应用场景。通过与transformers和sentence_transformers库的无缝集成,rubert-tiny2为俄语自然语言处理任务提供了简便而强大的工具。
rubert-base-cased-nli-threeway - 开源俄语NLP模型:支持自然语言推理与零样本分类
BERTGithubHuggingfaceNLI俄语开源项目模型自然语言推理零样本分类
这是一个基于DeepPavlov/rubert-base-cased微调的开源俄语NLP模型。它能够预测短文本间的逻辑关系(蕴含、矛盾或中性),支持自然语言推理和零样本文本分类任务。该模型在多个俄语NLI数据集上训练,并在各种评估集上展现出优秀性能。其多功能性和高效表现使其成为处理俄语文本理解任务的有力工具。
wav2vec2-xlsr-53-russian-emotion-recognition - 俄语语音情感识别工具
GithubHuggingfaceXLS-R Wav2Vec2俄语情感识别开源项目情感分类情感识别模型音频分类
本项目应用XLS-R Wav2Vec2模型进行俄语语音的情感识别,准确率为72%。通过多种情感分类标签,模型可识别愤怒、厌恶、兴奋、恐惧、快乐、中立及悲伤等情感。项目采用MIT许可证,使用Russian Emotional Speech Dialogs数据集,适合对情感识别技术有深入理解和应用需要的用户。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号