Project Icon

lazypredict

自动化机器学习模型评估工具

LazyPredict 是一个开源的 Python 库,用于机器学习自动化。它能快速构建和比较多种模型,支持分类和回归任务,无需复杂的参数调优。通过自动训练多个模型并生成性能报告,LazyPredict 帮助识别最适合特定数据集的模型类型,适用于初步评估和基准测试,显著提高了数据科学工作流程的效率。

LazyLLM - 低代码开发大语言模型应用的工具
AI应用GithubLazyLLM低代码开发多智能体应用开源项目模型微调
LazyLLM,一个创新的低代码平台,旨在帮助开发者低成本构建多智能体大语言模型应用。它简化了AI应用的构建及部署流程,支持一键式部署和跨平台操作,有效简化了初学者和技术专家的AI开发工作。
Lazy AI - AI提示词构建和部署全栈网络应用
AI助手AI工具Lazy AI云部署网络应用软件开发
Lazy AI是一个创新的软件开发平台,通过AI驱动的提示词系统实现快速构建全栈网络应用。平台提供直观界面,支持创建网站、聊天机器人和自动化工具等多种应用。一键云端部署功能简化了开发流程。Lazy AI旨在简化软件开发过程,为开发者提供全新的应用创建方式。
Lazy AI - AI驱动的全栈Web应用开发与部署平台
AI工具AI技术Lazy AI云部署应用开发模板库
Lazy AI平台通过AI技术简化全栈Web应用的开发过程。用户可利用提示词构建和修改应用,包括AI代理、自动化工具和聊天机器人。平台支持一键云端部署,并提供丰富的应用模板和社区资源。Lazy AI旨在为开发者提供高效、灵活的工具,使软件创作更加便捷。
pycaret - 开源的低代码Python机器学习库,能够简化和自动化机器学习工作流程
GithubPyCaretPython低代码开源开源项目机器学习
PyCaret是一个开源的低代码Python机器学习库,能够简化和自动化机器学习工作流程。通过减少代码量,PyCaret使实验更高效、更快速。它支持scikit-learn, XGBoost, LightGBM, CatBoost等多种机器学习框架,用户可以通过少量代码完成模型训练、评估和预测。无论是经验丰富的数据科学家,还是对低代码解决方案感兴趣的用户,PyCaret都是理想选择。
autogluon - 自动化机器学习工具,简单实现高精度预测
AutoGluonGithubPython开源项目机器学习深度学习自动化
AutoGluon简化了机器学习任务,让用户可以在图像、文本、时间序列和表格数据上轻松训练和部署高精度模型。它支持Python 3.8至3.11,并可在Linux、MacOS和Windows上运行。只需几行代码即可快速构建端到端机器学习模型,提供详细的安装指南、快速入门教程和丰富的资源,适合各层次用户的需求。
PredictEasy - 简化数据分析和业务智能的无代码平台
AI工具PredictEasy商业智能数据分析数据可视化机器学习
PredictEasy为企业提供无代码数据分析平台,集成数据可视化和机器学习功能。用户可以轻松探索数据、创建交互式图表和仪表板,部署预测模型,无需编程知识。平台支持多种集成,自动生成报告,并提供模型模拟器。适用于各类规模企业,旨在简化数据分析流程,提升决策效率,优化业务运营。
LightAutoML - 自动化创建二分类、多分类和回归模型解决方案
GithubLightAutoML分类开源项目机器学习模型创建自动机器学习
LightAutoML是一款自动化机器学习框架,专注于二分类、多分类和回归任务的模型创建。框架支持独立样本数据集处理,并运用AutoWoE库生成可解释模型。目前正在开发多表数据集和序列处理功能,还提供了GPU和Spark管道以提升计算效率。LightAutoML配有详细的文档和丰富的示例教程,适合多种机器学习需求,简化自动化模型开发。
evaluate - 多框架兼容的机器学习评估工具库
EvaluateGithub开源项目指标机器学习模型比较评估
evaluate是一个开源的机器学习评估工具库,支持Numpy、Pandas、PyTorch、TensorFlow和JAX等多种框架。它提供了数十种涵盖自然语言处理和计算机视觉等领域的常用评估指标。用户可以使用evaluate进行模型评估、性能对比和结果报告。该库还支持创建新的评估模块并推送至Hugging Face Hub,便于比较不同指标的输出。evaluate的其他特点包括类型检查、指标卡片和社区指标功能,为研究人员和开发者提供了全面的模型评估支持。
pyaf - Python开源库实现自动化时间序列预测
GithubPyAFPython开源项目时间序列预测机器学习自动化
PyAF是一个开源的Python自动预测库,基于NumPy、SciPy等流行数据科学模块构建。该库利用机器学习方法自动预测时间序列未来值,功能comparable于一些商业预测产品。它支持信号分解、外生数据和层次预测,提供简洁API和可定制建模过程。PyAF适用于Python 3.x,采用BSD 3-Clause许可证。PyAF可用于销售预测、股票走势分析、能源需求预测等多种时间序列预测任务。
sklearn-evaluation - 机器学习模型评估工具
GithubJupyter notebookPythonsklearn-evaluation开源项目机器学习模型评估
sklearn-evaluation是一款简便的机器学习模型评估工具,支持绘制混淆矩阵、特征重要性、精准率-召回率、ROC曲线、肘部曲线和轮廓图等多种图表,并生成HTML格式的评估报告。该工具还可使用本地SQLite数据库进行实验跟踪,分析Jupyter notebook输出,并通过SQL查询notebook数据。兼容Python 3.7及更高版本,适用于Linux、macOS和Windows平台,提供全面的模型评估功能。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号