Project Icon

bert4ner-base-chinese

基于BERT的中文命名实体识别模型,具备高精度性能

bert4ner-base-chinese项目是一个基于BERT的中文命名实体识别模型,在人民日报数据集上取得了高精度表现。通过BertSoftmax网络结构,能够准确识别文本中的人名、时间等实体信息。可通过nerpy库调用该模型,也支持无外部依赖的直接调用方式,适用于各种自然语言处理应用。

heBERT_NER - HeBERT: 专为希伯来语设计的命名实体识别和情感分析模型
GithubHeBERTHuggingface命名实体识别开源项目情感分析情感识别情绪用户生成内容模型
HeBERT是一个基于Google BERT架构的希伯来语模型,通过希伯来语OSCAR、维基百科以及情感用户生成内容数据集进行训练。它能够识别希伯来语文本中的人名、组织和地理位置等命名实体,并在测试中表现出色。此外,HeBERT还支持情感识别和情绪分析,研究人员和开发者可以在Huggingface平台上访问此模型。该工具适合需要进行深入希伯来语文本分析的用户。
ner-english-fast - 高效识别英语文本中的人名、地点和组织实体
FlairGithubHuggingfaceLSTM-CRF命名实体识别开源项目机器学习模型自然语言处理
ner-english-fast是基于Flair框架的命名实体识别模型,可识别英语文本中的人名、地点、组织和其他实体。该模型在CoNLL-03数据集上的F1分数为92.92,采用Flair嵌入和LSTM-CRF架构。它易于集成到NLP应用中,适用于文本分析和信息提取任务。模型支持快速部署,可通过简单的Python代码调用。
roberta-large-ontonotes5 - RoBERTa-large模型在OntoNotes 5数据集上的高性能命名实体识别微调版本
GithubHuggingfaceRoBERTaT-NER命名实体识别开源项目模型模型微调自然语言处理
这是roberta-large在OntoNotes 5数据集上的微调模型,专门用于命名实体识别任务。在测试集上,该模型达到了0.909的F1分数(微观)、0.905的精确度和0.912的召回率。模型采用CRF层,最大序列长度128,经过15轮训练。用户可通过tner库轻松应用此模型。它在多种实体类型识别中表现优异,尤其擅长识别地缘政治区域、组织和人物。
sbert-base-chinese-nli - SBERT中文句向量模型实现语义相似度计算
Chinese Sentence BERTGithubHuggingfaceUER-py句向量模型开源项目模型自然语言处理语义相似度
sbert-base-chinese-nli是一个基于BERT的中文句向量模型,通过UER-py框架预训练,并在ChineseTextualInference数据集上微调。该模型可将中文句子转换为向量表示,主要用于计算语义相似度。用户可通过sentence-transformers库轻松调用,适用于自然语言处理中的句子相似度任务。模型采用Siamese网络结构,在腾讯云平台上进行了5轮微调,以提升性能。
character-bert - 字符级CNN构建的开放词汇表神经网络模型
CharacterBERTGithub开放词表开源项目神经网络自然语言处理词嵌入
CharacterBERT是BERT的一个变体,采用字符级CNN模块动态构建词表示,无需依赖预定义词片词汇表。这种方法可生成任意输入标记的表示,适用于医学等专业领域。与标准BERT相比,CharacterBERT生成词级上下文表示,对拼写错误更为鲁棒,且可轻松适应不同领域而无需重新训练词片词汇表。该模型在多个医学领域任务中表现优于BERT,提供更便捷实用的词级开放词汇表表示。
biomedical-ner-all - 基于英语的生物医学实体识别AI模型
AIGithubHuggingfaceMaccrobatNamed Entity Recognitiontransformers库开源项目模型生物医学
该AI模型基于Maccrobat数据集训练,可以识别107种生物医学实体,适用于案例报告等文本工作。通过distilbert-base-uncased构建,拥有低碳排放(0.0279千克)和30.17分钟的训练时间。通过Huggingface API或transformers库,可便捷应用于生物医学领域;教程视频提供详细使用说明。
GLiNER - 通用轻量级命名实体识别模型
BERTGLiNERGithub命名实体识别开源项目机器学习自然语言处理
GLiNER是一个通用轻量级的命名实体识别模型,采用双向转换器编码器架构。它能识别任意类型的实体,填补了传统NER模型和大型语言模型之间的空白。GLiNER具有灵活性高、体积小、效率高的特点,适用于资源受限的场景。该模型支持自定义实体类型,可应用于信息提取、文本分类等多种自然语言处理任务。
gliner_large-v2.1 - 通用命名实体识别模型,适合资源有限的应用场景
GLiNERGithubHuggingface双向Transformer命名实体识别多语言开源开源项目模型
GLiNER是使用双向Transformer编码器的通用命名实体识别模型,能够识别多种实体类型。相比于传统NER模型和体积庞大的语言模型,GLiNER在资源有限的情况下表现出卓越的灵活性和效率。最新的GLiNER v2.1版本支持单语和多语模型,性能表现依旧出色。用户可以通过安装GLiNER Python库,将其方便地集成到项目中,适用于多种语言的文本预测任务。
gliner_small-v2.1 - 基于双向Transformer的轻量级通用实体识别模型
GLiNERGithubHuggingface命名实体识别开源项目机器学习模型模型训练自然语言处理
gliner_small-v2.1是一个基于双向Transformer架构的命名实体识别模型,具备识别任意类型实体的能力。这款模型采用166M参数规模,在保持较小资源占用的同时提供灵活的实体识别功能。模型支持英语处理,采用Apache-2.0许可证开源发布。相比传统NER模型的固定实体类型限制和大语言模型的高资源消耗,该模型提供了一个平衡的解决方案。
camembert-ner-with-dates - 基于camemBERT的法语命名实体识别模型集成日期标记功能
CamemBERTGithubHuggingFaceHuggingface命名实体识别开源项目日期标注模型自然语言处理
camembert-ner-with-dates是一个增强版的法语命名实体识别模型,基于camemBERT架构,新增日期标记功能。该模型在扩展的wikiner-fr数据集(约17万句)上训练,支持识别组织、人名、地点、杂项和日期等实体。在混合测试数据上,模型达到83%的F1分数,优于传统日期解析方法。用户可通过Hugging Face平台轻松使用该模型,总体精确度、召回率和F1分数均达到0.928。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号