Project Icon

indobert-model-ner

IndobertNER:基于BERT的印度尼西亚语命名实体识别模型

IndobertNER是基于indolem/indobert-base-uncased模型微调的印度尼西亚语命名实体识别模型。在评估集上,该模型展现出优秀性能,精确率达0.8307,召回率为0.8454,F1分数为0.8380。模型训练采用Adam优化器,使用线性学习率调度器,经过10轮迭代。虽然目前缺乏具体应用指南,但IndobertNER在印度尼西亚语自然语言处理领域具有广阔应用前景。

bert-base-indonesian-NER - BERT模型驱动的印度尼西亚语命名实体识别系统
GithubHuggingfaceMIT印尼语开源项目标记分类模型许可证语言
bert-base-indonesian-NER是一个基于BERT架构的印度尼西亚语命名实体识别模型。该模型经过优化,能够准确识别印尼语文本中的人名、地名和组织机构等实体。作为印尼语自然语言处理的重要工具,此项目为本地化NLP技术的发展提供了有力支持。
indobert-base-uncased - 印尼语BERT模型提升NLP任务表现
GithubHuggingfaceIndoBERT印尼语句法分析开源项目情感分析模型语言模型
IndoBERT是为印尼语开发的BERT模型,经过2.4百万步的训练,使用了超过2.2亿字的数据来源于印尼维基百科与新闻和网络语料库。该模型在词性标注、命名实体识别等印尼语NLP任务中表现优异,表现高于其他模型。IndoBERT的卓越性能在印尼语基准测试IndoLEM中得到验证,并可通过transformers库加载使用。
indobert-base-p2 - IndoBERT:印尼语自然语言处理的先进模型
GithubHuggingfaceIndoBERT印尼语开源项目机器学习模型自然语言处理语言模型
IndoBERT是一个基于BERT的尖端模型,专为印度尼西亚语言设计。它通过遮蔽语言模型和句子预测进行预训练。使用Indo4B数据集,该模型在Base和Large架构中实现,参数从11.7M到335.2M不等,适用于多种自然语言处理任务。用户可以使用Transformers库轻松加载IndoBERT,提取上下文表示,增强印尼语处理的准确性和效率,广泛适用于研究和实践。
indobert-base-p1 - IndoBERT基于BERT架构的印尼语预训练模型
GithubHuggingfaceIndo4BIndoBERT印尼语开源项目模型自然语言处理预训练模型
indobert-base-p1是基于BERT架构的印尼语预训练模型,在23.43GB的Indo4B语料库上训练。该模型采用掩码语言建模和下一句预测目标,包含1.245亿参数,适用于多种印尼语自然语言处理任务。研究人员可通过Hugging Face加载模型和分词器,提取上下文表示,为印尼语NLP研究和应用奠定基础。
IndicNER - 面向11种印度语言的多语言命名实体识别模型
GithubHuggingfaceIndicNER印度语言命名实体识别多语言模型开源项目模型自然语言处理
IndicNER是一个针对11种印度语言开发的命名实体识别模型。该模型通过数百万句子的微调训练,并在人工标注测试集和多个公开数据集上进行了性能评估。IndicNER支持阿萨姆语、孟加拉语、古吉拉特语等多种印度语言,能够有效识别句子中的命名实体。作为一个基于最新深度学习技术的工具,IndicNER为印度语言的自然语言处理研究和应用提供了有力支持。
indobert-emotion-classification - 高性能印尼语情感分类BERT模型
GithubHuggingfaceIndoBERTtransformer开源项目情感分类模型模型导入自然语言处理
indobert-emotion-classification是一个基于BERT的印尼语情感分析模型。该模型能够对印尼语文本进行情感分类,支持多种情感标签。通过Hugging Face Transformers库,indobert-emotion-classification可以轻松集成到各种自然语言处理项目中。这个模型适用于分析印尼语社交媒体内容、客户反馈等文本数据的情感倾向,为研究人员和开发者提供了有力的工具。
indonesian-roberta-base-posp-tagger - 基于RoBERTa的印尼语词性标注模型
GithubHuggingfaceRoBERTaindonlu印尼语开源项目模型自然语言处理词性标注
该模型是在indonlu数据集上微调的印尼语词性标注工具,基于indonesian-roberta-base架构。经过10轮训练后,模型在测试集上展现出优秀性能,精确率、召回率、F1值和准确率均达到0.9625。模型采用Adam优化器和线性学习率调度策略,为印尼语自然语言处理提供了可靠的词性标注支持。
indonesia-bert-sentiment-classification - 基于IndoBERT模型的印尼情感分类工具
GithubHuggingfaceIndoBERTIndonesian BERT Base Sentiment ClassifierProsa情感数据集text-classification开源项目情感分析模型
基于IndoBERT和Prosa数据集的模型,提供印尼语文本情感分析与分类,准确识别正面、中立和负面情绪,适用于自然语言处理任务。
bert-finetuned-ner - BERT微调模型实现高精度命名实体识别
BERTGithubHuggingfaceconll2003命名实体识别开源项目模型模型微调自然语言处理
该项目基于BERT模型,在conll2003数据集上进行微调,专注于命名实体识别任务。模型在评估集上展现出优异性能,精确率达0.9355,召回率为0.9514,F1分数为0.9433。经过3轮训练,采用Adam优化器和线性学习率调度器,模型在命名实体识别领域表现卓越。
bert-base-NER - 基于BERT的高性能命名实体识别模型用于精准NER任务
BERTCoNLL-2003GithubHuggingface命名实体识别开源项目机器学习模型自然语言处理
bert-base-NER是一个基于BERT的预训练模型,专门用于命名实体识别任务。该模型在CoNLL-2003数据集上进行微调,能够识别地点、组织、人名和杂项四类实体。在NER任务中,bert-base-NER展现出优秀性能,F1分数达92.59%。模型提供简洁接口,可广泛应用于各类自然语言处理场景。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号