Project Icon

tensor2tensor

一个旨在使深度学习更加深入的深度学习模型和数据集的库

Google Brain团队和社区合作开发的tensor2tensor库,通过提供多模态的深度学习模型和数据集,简化了机器学习的应用,尤其在文本、图像与语音处理上表现出色。项目不再开发新功能,但持续维护并推荐用户迁移到其后继库Trax,以获得更好的支持和更新。

transformerlab-app - 多功能大语言模型实验平台 支持本地操作和微调
GithubTransformer Lab人工智能开源软件开源项目模型训练语言模型
Transformer Lab是一个功能丰富的大语言模型实验平台。该应用支持一键下载多种流行模型、跨硬件微调、RLHF优化等功能。平台提供模型聊天、评估和RAG等交互方式,并具备REST API、云端运行和插件系统。Transformer Lab适用于多种操作系统,为AI研究和开发提供了便捷的工具。
trankit - 轻量级的多语言自然语言处理Python工具包,支持多个语言的预训练模型
GithubNLP工具PythonTrankitTransformer多语言开源项目
Trankit是一个基于Transformer架构的轻量级Python工具包,支持多语言自然语言处理,包含针对56种语言的90个预训练流水线。它引入了自动模式,多语言输入可自动检测。Trankit在多个自然语言处理任务上表现优异,超过Stanza等主流工具包,并保持高效的内存使用和处理速度。用户无需编程经验即可通过简便的命令行界面使用,还可定制流水线。
tensorflow-image-models - 将PyTorch图像模型移植到TensorFlow的预训练模型库
GithubTensorFlow图像模型开源项目机器学习深度学习预训练权重
tensorflow-image-models是一个将PyTorch图像模型移植到TensorFlow的开源项目。它提供了多种预训练模型,包括ViT、DeiT、ResNet等,可用于图像分类和分割。该项目为开发者提供了简单的API来创建、预处理和保存/加载模型,并支持调整类别数量以适应不同任务。通过这个模型库,研究人员和开发者可以更方便地在TensorFlow中使用先进的图像模型。
TensorRT-LLM - NVIDIA开发的大型语言模型推理优化工具
AI推理GPU加速GithubNVIDIATensorRT-LLM大语言模型开源项目
TensorRT-LLM是一个用于优化大型语言模型推理的开源工具。它提供Python API来定义模型和构建TensorRT引擎,支持多GPU和多节点部署。该工具集成了多种量化技术,如INT4/INT8权重量化和SmoothQuant,以提升性能和降低内存占用。TensorRT-LLM预置了多个常用模型,可根据需求进行修改和扩展。
TransformerHub - 实现与参考多种Transformer模型
BERTGPTGithubTransformerTransformerHubViT开源项目
此项目实现了多种Transformer架构,包括seq2seq、仅编码器、仅解码器和统一模型,旨在提高编程技能并提供深度学习参考。特色包括多种Attention模块、位置嵌入和采样方法,当前进展是实现DINO模型。项目受到多个开源项目的启发和支持。
text_classifier_tf2 - 多模型文本分类框架 支持TextCNN、BERT等
Github开源项目文本分类模型部署深度学习模型训练方法评估指标
该开源项目提供基于TensorFlow 2的多模型文本分类框架。支持TextCNN、TextRNN、BERT等模型,集成词向量增强、对抗训练、对比学习等功能。框架适用于二分类和多分类任务,提供灵活配置选项。项目还包含交互式预测和批量测试工具,便于分析模型性能和错误案例。
tf2jax - 实验性TensorFlow到JAX函数转换库
GithubJAXTF2JAXTensorFlow函数转换开源项目机器学习
tf2jax是一个实验性库,用于将TensorFlow函数和计算图转换为JAX函数。它支持SavedModel和TensorFlow Hub格式,使现有TensorFlow模型能够在JAX环境中重用。该库提供透明的转换过程,便于调试和分析。tf2jax支持自定义梯度和随机性处理,并提供灵活的配置选项。尽管存在一些限制,tf2jax为JAX用户提供了一种集成TensorFlow功能的有效方法。
e2-tts-pytorch - E2-TTS 简化的非自回归零样本文本转语音模型
E2 TTSGithubPytorch开源项目深度学习语音合成非自回归模型
E2-TTS-pytorch是一个开源项目,实现了基于PyTorch的E2-TTS(Embarrassingly Easy Fully Non-Autoregressive Zero-Shot TTS)模型。该项目提供了持续时间预测器和E2TTS模型的简洁实现,支持自定义模型参数如维度和深度。项目包含代码示例和采样功能,基于最新研究成果,为研究人员和开发者提供了一个灵活的TTS实验平台。
recommenders - 利用TensorFlow构建推荐系统模型的库
GithubKerasTensorFlow Recommenders开源项目推荐系统数据准备模型训练
TensorFlow Recommenders 是一款利用TensorFlow构建推荐系统模型的库。它涵盖了数据准备、模型构建、训练、评估和部署的完整工作流程,基于Keras,旨在为用户提供易学且灵活的体验,能够支持构建复杂模型。只需确保安装TensorFlow 2.x,并使用pip安装即可开始使用。详细的文档和教程能够帮助用户快速入门。
MetaTransformer - 统一12种模态的多模态学习框架
GithubMeta-Transformer人工智能多模态学习开源项目深度学习计算机视觉
Meta-Transformer是一个创新的多模态学习框架,可处理12种不同模态的数据,包括自然语言、图像、点云和音频等。该框架采用共享编码器架构和数据到序列转换方法,支持分类、检测和分割等多种任务。项目提供开源预训练模型和代码实现,为多模态AI研究提供了有力支持。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

问小白

问小白是一个基于 DeepSeek R1 模型的智能对话平台,专为用户提供高效、贴心的对话体验。实时在线,支持深度思考和联网搜索。免费不限次数,帮用户写作、创作、分析和规划,各种任务随时完成!

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

Trae

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号