Project Icon

indobert-emotion-classification

高性能印尼语情感分类BERT模型

indobert-emotion-classification是一个基于BERT的印尼语情感分析模型。该模型能够对印尼语文本进行情感分类,支持多种情感标签。通过Hugging Face Transformers库,indobert-emotion-classification可以轻松集成到各种自然语言处理项目中。这个模型适用于分析印尼语社交媒体内容、客户反馈等文本数据的情感倾向,为研究人员和开发者提供了有力的工具。

emotion-english - 基于自然语言处理的20类情感识别模型
GithubHugging FaceHuggingface开源项目情感分类文本分析机器学习模型自然语言处理
emotion-english项目是一个基于transformers库的文本分类模型,可识别20种不同情感。该模型支持从愤怒、好奇到悲伤、欢乐等多样化情感识别,易于集成到各类自然语言处理应用中。这一工具为情感分析任务提供了精确而全面的解决方案,适用于需要深入理解文本情感的各种场景。
tiny-bert-sst2-distilled - 轻量级BERT文本情感分类模型
BERTGithubHuggingface开源项目数据集微调文本分类机器学习模型模型训练
tiny-bert-sst2-distilled模型通过对BERT基础版本进行蒸馏优化,专注于文本情感分类任务。该模型在SST-2评估集上达到83.26%的准确率,保持了不错的性能表现。模型架构采用2层transformer结构,隐藏层维度为128,具有轻量化特点,适合在计算资源有限的环境中部署使用。
bert-base-turkish-sentiment-cased - 高精度的土耳其语言情感分析BERT模型
BERTurkGithubHuggingface土耳其语开源项目情感分析数据集模型模型训练
该模型基于BERTurk,专为土耳其语言的情感分析设计,结合了电影评论、产品评论和推特数据集,实现了95.4%的准确度。适用于多种土耳其语文本情感分析场景,项目由Savas Yildirim发布于Hugging Face平台,并采用了先进的特征表示与融合技术。使用者需遵循引用要求以符合合规标准。
AraBert-Arabic-Sentiment-Analysis - 基于AraBERT的阿拉伯语情感分析模型实现80%分类准确率
AraBERTGithubHuggingface开源项目情感分析机器学习模型自然语言处理阿拉伯语情感分析
基于AraBERT预训练模型微调的阿拉伯语情感分析模型,在评估数据集上实现了80.03%的准确率和65.43%的宏F1分数。模型采用Adam优化器和线性学习率调度器,使用16的训练批次大小,经过2轮训练得到。基于Transformers框架开发,专注于阿拉伯语文本的情感分类任务。
sentiment_analysis_generic_dataset - BERT微调模型实现精准文本情感分析
BERTGithubHuggingface开源项目情感分析文本分类模型自然语言处理预训练模型
该项目基于BERT预训练模型,专门针对情感分析任务进行微调。模型使用bert-base-uncased作为基础,通过掩码语言建模和下一句预测技术进行预训练,具备理解双向语境的能力。这种预训练方法使模型能为情感分析等下游任务提供有效特征。值得注意的是,此微调版本仅适用于情感分析,不推荐用于其他任务的进一步调整。
bert_turkish_sentiment - 微调TurkishBERTweet的高精度土耳其语情感分析模型
BERTGithubHuggingfaceTurkishBERTweet土耳其语开源项目情感分析模型自然语言处理
该模型基于VRLLab/TurkishBERTweet微调而来,专门用于土耳其语情感分析。在评估集上达到0.9972的高准确率,显示出强大的性能。模型采用Adam优化器,配合线性学习率调度器,经过3轮训练,每批次处理8个样本。虽然在土耳其语文本情感分析方面表现出色,但其具体应用场景和限制仍有待进一步研究。
distilbert-base-uncased-go-emotions-student - 面向GoEmotions数据集的高效情感分类模型
GithubGoEmotionsHuggingface开源项目文本分类模型模型蒸馏语言模型零样本分类
该模型运用未标注GoEmotions数据集,利用零样本学习技术进行精炼。尽管其性能可能略逊于完全监督下的模型,但它展示了如何将复杂的自然语言推理模型简化为高效的模型,以便在未标注数据上进行分类器训练。
phobert-base-vi-sentiment-analysis - 越南语情感分析工具,实现文本情绪精确判定
GithubHuggingfacePhoBert开源项目情感分析情绪分类模型模型训练越南语
模型专注越南语文本情绪识别,提供准确的情感分类。其开放源码和多元应用场合使研究者和开发者受益。
heBERT_sentiment_analysis - 希伯来语预训练BERT模型实现情感分析和情绪识别
GithubHeBERTHuggingface开源项目情感分析情绪识别模型自然语言处理预训练模型
heBERT_sentiment_analysis是一个针对希伯来语的预训练BERT模型,用于情感极性分析和情绪识别。该模型在包含10亿词的希伯来语语料库上训练,能准确识别文本情感。在情感分析任务中,模型表现优异,F1分数达0.97。研究团队还收集了用户生成内容数据集进行情绪标注。这为希伯来语自然语言处理研究提供了有力的基础工具。
emotion-english-distilroberta-base - DistilRoBERTa英文文本情感分析模型
DistilRoBERTaGithubHugging FaceHuggingface开源项目情感分类机器学习模型自然语言处理
该模型基于DistilRoBERTa-base微调,用于英文文本情感分析。可预测7种情绪:愤怒、厌恶、恐惧、快乐、中性、悲伤和惊讶。训练数据来自Twitter、Reddit等6个多样化数据集。提供简单的3行代码使用方法,适用于单个文本和完整数据集分析。模型在平衡数据集上的评估准确率为66%,远高于随机基准。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号