Project Icon

convnext_tiny.in12k

ConvNeXt架构图像分类模型 适用于多种视觉任务

convnext_tiny.in12k是基于ConvNeXt架构的图像分类模型,在ImageNet-12k数据集上训练。该模型支持图像分类、特征图提取和图像嵌入等应用,参数量36.9M,GMACs 4.5,224x224分辨率下Top1精度84.186%。性能与效率均衡,适用于多种计算机视觉任务。

inceptionnext - 结合Inception和ConvNeXt优势的高效图像识别模型
ConvNeXtGithubInceptionNeXt卷积神经网络图像分类开源项目深度学习
InceptionNeXt是一种创新的图像识别模型,融合了Inception的设计理念和ConvNeXt的架构。通过分解大型深度卷积核,该模型在速度和准确率方面取得了平衡,达到了ResNet-50的速度和ConvNeXt-T的精度。在ImageNet数据集上,InceptionNeXt展现出卓越性能,推动了计算机视觉领域的发展。研究团队提供了多种规模的预训练模型,适用于不同的应用场景。
convnextv2_large.fcmae - 用于图像特征提取的自监督卷积模型
ConvNeXt-V2GithubHuggingfaceImageNet-1k图像分类开源项目模型特征提取自监督学习
ConvNeXt-V2是一种运用全卷积掩码自动编码器框架进行预训练的自监督特征表示模型,适用于微调和特征提取。模型适用于图像分类、特征图提取和图像嵌入,具备较高的参数和计算效率,可在ImageNet-1k等大规模数据集上展现出色表现。通过timm库加载,模型提供了处理多种图像任务的灵活性与精确度,是计算机视觉领域的重要工具。
edgenext_small.usi_in1k - 轻量级CNN-Transformer混合模型EdgeNeXt用于移动视觉应用
EdgeNeXtGithubHuggingfaceImageNet图像分类开源项目模型特征提取神经网络
edgenext_small.usi_in1k是一款轻量级CNN-Transformer混合模型,针对移动视觉应用优化。该模型在ImageNet-1k数据集上训练,参数量为5.6M,GMACs为1.3。它支持图像分类、特征图提取和图像嵌入等功能,结合CNN和Transformer优势,在保持性能的同时减少计算资源需求,适合在资源受限的移动设备上运行。
convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_320 - ConvNeXt大型图像分类模型 LAION-2B预训练 ImageNet微调
ConvNeXtGithubHuggingfaceImageNetLAION-2Btimm图像分类开源项目模型
ConvNeXt大型图像分类模型采用CLIP方法在LAION-2B数据集上预训练,并在ImageNet-12k和ImageNet-1k上微调。模型包含2亿参数,320x320输入下top-1准确率达87.968%。支持图像分类、特征提取和嵌入等任务,可应用于多种计算机视觉场景。
inception_resnet_v2.tf_in1k - Inception-ResNet-v2架构的图像分类与特征提取模型
GithubHuggingfaceImageNet-1kinception_resnet_v2timm图像分类开源项目模型特征提取
inception_resnet_v2.tf_in1k是基于Inception-ResNet-v2架构的图像分类模型,在ImageNet-1k数据集上训练。模型拥有5580万参数,13.2 GMACs计算量,适用于299x299像素的输入图像。除图像分类外,该模型还支持特征图提取和图像嵌入功能。它在保持较低计算复杂度的同时提供高精度图像识别能力,适用于多种计算机视觉任务。
convmixer_768_32.in1k - ConvMixer架构的高效图像分类与特征提取模型
GithubHuggingfacetimm卷积神经网络图像分类开源项目模型深度学习特征提取
convmixer_768_32.in1k是基于ConvMixer架构的图像分类模型,在ImageNet-1k数据集上训练完成。该模型拥有2110万参数,支持224x224像素的图像输入。除图像分类外,它还可用于生成图像嵌入。通过timm库,开发者能方便地加载预训练模型进行推理。这一设计简洁高效,为计算机视觉应用提供了实用的解决方案。
xcit_nano_12_p8_224.fb_in1k - 基于跨协方差转换器的轻量级图像分类模型
GithubHuggingfaceImageNet图像分类开源项目模型深度学习神经网络计算机视觉
xcit_nano_12_p8_224.fb_in1k采用跨协方差图像转换器(XCiT)架构,是一个参数量为3.0M的轻量级图像分类模型。模型在ImageNet-1k数据集上完成预训练,支持224x224尺寸的图像输入,可应用于图像分类和特征提取。模型通过跨协方差注意力机制降低计算复杂度,适合实际部署应用。
tf_mobilenetv3_small_minimal_100.in1k - MobileNetV3小型化模型:高效移动端图像分类
GithubHuggingfaceImageNet-1kMobileNet-v3timm图像分类开源项目模型特征提取
tf_mobilenetv3_small_minimal_100.in1k是一款针对移动设备优化的轻量级图像分类模型。基于MobileNet-v3架构,该模型在ImageNet-1k数据集上训练,仅有200万参数和0.1 GMACs,适用于224x224像素的图像输入。除图像分类外,它还可作为特征提取器用于其他计算机视觉任务。通过timm库,开发者可以方便地加载预训练模型,实现图像分类、特征图提取和图像嵌入等功能。这个模型平衡了性能和效率,特别适合资源受限的移动应用场景。
swinv2_tiny_window8_256.ms_in1k - Swin Transformer V2轻量级图像分类与特征提取模型
GithubHuggingfaceImageNet-1kSwin Transformer V2timm图像分类开源项目模型特征提取
swinv2_tiny_window8_256.ms_in1k是基于Swin Transformer V2架构的轻量级图像分类模型,在ImageNet-1k数据集上预训练。该模型拥有2830万参数,6.0 GMACs计算量,支持256x256像素输入。它可用于图像分类、特征图提取和图像嵌入等任务,提供高效的视觉特征提取能力。研究人员和开发者可通过timm库轻松加载此预训练模型,应用于多种计算机视觉项目。
res2net50_14w_8s.in1k - Res2Net架构的多尺度骨干网络实现高效图像分类
GithubHuggingfaceImageNetRes2Nettimm图像分类开源项目模型深度学习模型
res2net50_14w_8s.in1k是基于Res2Net架构的图像分类模型,在ImageNet-1k数据集上训练。该模型采用多尺度ResNet结构,具有2510万参数,计算复杂度为4.2 GMACs。除图像分类外,还可作为特征提取器应用于其他计算机视觉任务。模型接受224x224像素的输入图像,并提供API支持图像分类、特征图提取和图像嵌入等功能。其高效的多尺度结构使其在保持准确性的同时降低了计算成本。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号