Project Icon

convnext_tiny.in12k_ft_in1k

ConvNeXt微型模型基于ImageNet-12k预训练和ImageNet-1k微调

ConvNeXt微型图像分类模型在ImageNet-12k数据集上预训练,并在ImageNet-1k上微调。模型采用最新ConvNeXt架构,参数量28.59M,GMACs 4.47,激活量13.44M。224x224输入时Top-1准确率84.186%,384x384输入时达85.118%。适用于图像分类、特征提取和图像嵌入等计算机视觉任务。

convnext_xxlarge.clip_laion2b_soup_ft_in1k - 大规模预训练的高性能图像分类模型
ConvNeXtGithubHuggingfaceImageNet-1kLAIONtimm图像分类开源项目模型
ConvNeXt XXLarge是一款基于ConvNeXt架构的高性能图像分类模型。该模型在LAION-2B数据集上进行CLIP预训练,随后在ImageNet-1k上微调,拥有8.46亿参数。在256x256的图像输入下,Top-1准确率达到88.612%。除图像分类外,该模型还支持特征图提取和图像嵌入生成,可为多种计算机视觉任务提供强大支持。
edgenext_small.usi_in1k - 轻量级CNN-Transformer混合模型EdgeNeXt用于移动视觉应用
EdgeNeXtGithubHuggingfaceImageNet图像分类开源项目模型特征提取神经网络
edgenext_small.usi_in1k是一款轻量级CNN-Transformer混合模型,针对移动视觉应用优化。该模型在ImageNet-1k数据集上训练,参数量为5.6M,GMACs为1.3。它支持图像分类、特征图提取和图像嵌入等功能,结合CNN和Transformer优势,在保持性能的同时减少计算资源需求,适合在资源受限的移动设备上运行。
inceptionnext - 结合Inception和ConvNeXt优势的高效图像识别模型
ConvNeXtGithubInceptionNeXt卷积神经网络图像分类开源项目深度学习
InceptionNeXt是一种创新的图像识别模型,融合了Inception的设计理念和ConvNeXt的架构。通过分解大型深度卷积核,该模型在速度和准确率方面取得了平衡,达到了ResNet-50的速度和ConvNeXt-T的精度。在ImageNet数据集上,InceptionNeXt展现出卓越性能,推动了计算机视觉领域的发展。研究团队提供了多种规模的预训练模型,适用于不同的应用场景。
tf_mobilenetv3_small_minimal_100.in1k - MobileNetV3小型化模型:高效移动端图像分类
GithubHuggingfaceImageNet-1kMobileNet-v3timm图像分类开源项目模型特征提取
tf_mobilenetv3_small_minimal_100.in1k是一款针对移动设备优化的轻量级图像分类模型。基于MobileNet-v3架构,该模型在ImageNet-1k数据集上训练,仅有200万参数和0.1 GMACs,适用于224x224像素的图像输入。除图像分类外,它还可作为特征提取器用于其他计算机视觉任务。通过timm库,开发者可以方便地加载预训练模型,实现图像分类、特征图提取和图像嵌入等功能。这个模型平衡了性能和效率,特别适合资源受限的移动应用场景。
convmixer_768_32.in1k - ConvMixer架构的高效图像分类与特征提取模型
GithubHuggingfacetimm卷积神经网络图像分类开源项目模型深度学习特征提取
convmixer_768_32.in1k是基于ConvMixer架构的图像分类模型,在ImageNet-1k数据集上训练完成。该模型拥有2110万参数,支持224x224像素的图像输入。除图像分类外,它还可用于生成图像嵌入。通过timm库,开发者能方便地加载预训练模型进行推理。这一设计简洁高效,为计算机视觉应用提供了实用的解决方案。
mixnet_l.ft_in1k - MixNet-L:轻量级混合深度卷积网络实现高效图像分类
GithubHuggingfaceImageNet-1kMixNettimm图像分类开源项目模型特征提取
mixnet_l.ft_in1k是一个在ImageNet-1k数据集上微调的MixNet架构图像分类模型。该模型采用混合深度卷积核,参数量仅为7.3M,计算量为0.6 GMACs,实现了高效的分类性能。支持224x224像素输入,可用于图像分类、特征提取和生成图像嵌入。作为一个轻量级yet性能出色的视觉特征提取器,适用于多种计算机视觉应用场景。
vit_tiny_patch16_384.augreg_in21k_ft_in1k - ViT-Tiny 轻量级视觉转换器模型实现图像分类与特征提取
GithubHuggingfaceImageNetVision Transformertimm图像分类开源项目模型深度学习
ViT-Tiny是一款轻量级视觉转换器模型,专为图像分类和特征提取而设计。该模型在ImageNet-21k上预训练,并在ImageNet-1k上微调,采用了先进的数据增强和正则化技术。模型仅有5.8M参数,能处理384x384尺寸的图像,通过timm库可轻松加载用于推理或进一步微调。ViT-Tiny在保持高性能的同时,大幅降低了计算资源需求,适合各类图像识别应用场景。
xcit_nano_12_p8_224.fb_in1k - 基于跨协方差转换器的轻量级图像分类模型
GithubHuggingfaceImageNet图像分类开源项目模型深度学习神经网络计算机视觉
xcit_nano_12_p8_224.fb_in1k采用跨协方差图像转换器(XCiT)架构,是一个参数量为3.0M的轻量级图像分类模型。模型在ImageNet-1k数据集上完成预训练,支持224x224尺寸的图像输入,可应用于图像分类和特征提取。模型通过跨协方差注意力机制降低计算复杂度,适合实际部署应用。
inception_resnet_v2.tf_in1k - Inception-ResNet-v2架构的图像分类与特征提取模型
GithubHuggingfaceImageNet-1kinception_resnet_v2timm图像分类开源项目模型特征提取
inception_resnet_v2.tf_in1k是基于Inception-ResNet-v2架构的图像分类模型,在ImageNet-1k数据集上训练。模型拥有5580万参数,13.2 GMACs计算量,适用于299x299像素的输入图像。除图像分类外,该模型还支持特征图提取和图像嵌入功能。它在保持较低计算复杂度的同时提供高精度图像识别能力,适用于多种计算机视觉任务。
tf_mixnet_l.in1k - MixNet架构的轻量级图像分类模型
GithubHuggingfaceImageNetMixNetPyTorchtimm图像分类开源项目模型
tf_mixnet_l.in1k是一个基于MixNet架构的图像分类模型,在ImageNet-1k数据集上训练。该模型采用混合深度卷积核,参数量为7.3M,计算量为0.6 GMACs。它支持图像分类、特征图提取和图像嵌入等功能,适用于224x224像素的输入图像。tf_mixnet_l.in1k在保持较小模型规模的同时,为多种计算机视觉任务提供了有效的解决方案。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号