Project Icon

inception_resnet_v2.tf_in1k

Inception-ResNet-v2架构的图像分类与特征提取模型

inception_resnet_v2.tf_in1k是基于Inception-ResNet-v2架构的图像分类模型,在ImageNet-1k数据集上训练。模型拥有5580万参数,13.2 GMACs计算量,适用于299x299像素的输入图像。除图像分类外,该模型还支持特征图提取和图像嵌入功能。它在保持较低计算复杂度的同时提供高精度图像识别能力,适用于多种计算机视觉任务。

resnetrs152.tf_in1k - ResNetRS-B模型提供的图像信息处理新选择
GithubHuggingfaceImageNetResNetRS-BTensorflowtimm图像分类开源项目模型
ResNetRS-B是一款图像分类模型,具备ReLU激活、单层7x7卷积池化和1x1卷积下采样功能。该模型由论文作者在ImageNet-1k上使用Tensorflow训练,拥有86.6M的参数量,支持320x320图像测试。其多功能性使其适用于图像分类、特征提取和图像嵌入任务,通过timm库可便捷地在Python中实现应用。
tinynet_a.in1k - 轻量级图像分类模型 TinyNet 实现高效特征提取
GithubHuggingfaceImageNetTinyNet图像分类开源项目模型深度学习神经网络
tinynet_a.in1k是基于ImageNet-1k数据集训练的轻量级图像分类模型。它仅有6.2M参数和0.3 GMACs,适用于192x192像素的图像处理。该模型可用于图像分类、特征图提取和图像嵌入,在资源受限环境中表现出色。通过timm库,开发者可以方便地使用预训练模型进行各种计算机视觉任务。tinynet_a.in1k在保持高效性能的同时,为图像处理应用提供了一个轻量化解决方案。
tf_mobilenetv3_large_minimal_100.in1k - MobileNetV3轻量级图像分类模型
GithubHuggingfaceImageNetMobileNet-v3pytorchtimm图像分类开源项目模型
tf_mobilenetv3_large_minimal_100.in1k是基于MobileNet-v3架构的图像分类模型,在ImageNet-1k数据集上训练。该模型参数量为3.9M,计算复杂度为0.2 GMACs,适用于资源受限的移动设备。模型支持图像分类、特征图提取和图像嵌入等功能。最初由TensorFlow团队开发,后由Ross Wightman移植到PyTorch平台,为开发者提供了多平台使用选择。
tf_mixnet_l.in1k - MixNet架构的轻量级图像分类模型
GithubHuggingfaceImageNetMixNetPyTorchtimm图像分类开源项目模型
tf_mixnet_l.in1k是一个基于MixNet架构的图像分类模型,在ImageNet-1k数据集上训练。该模型采用混合深度卷积核,参数量为7.3M,计算量为0.6 GMACs。它支持图像分类、特征图提取和图像嵌入等功能,适用于224x224像素的输入图像。tf_mixnet_l.in1k在保持较小模型规模的同时,为多种计算机视觉任务提供了有效的解决方案。
tf_efficientnetv2_xl.in21k_ft_in1k - EfficientNet-v2开源图像分类与特征抽取模型
EfficientNet-v2GithubHuggingfaceImageNet-21kTensorFlowtimm图像分类开源项目模型
EfficientNet-v2模型在ImageNet-21k上预训练并在ImageNet-1k上微调,具备图像分类、特征提取与图像嵌入功能。初始使用Tensorflow训练,后由Ross Wightman移植至PyTorch。模型拥有208.1百万参数与52.8 GMACs计算量,支持训练时384x384与测试时512x512的图像尺寸。通过timm库,便可创建预训练模型,用于图像分类及特征映射。本模型在研究与应用中表现出强大的性能及灵活性。
resnet101.a1h_in1k - ResNet-B架构图像分类模型 支持多样化特征提取
GithubHuggingfaceResNettimm图像分类开源项目模型深度学习预训练模型
resnet101.a1h_in1k是基于ResNet-B架构的图像分类模型,在ImageNet-1k数据集上训练。模型采用ReLU激活函数、7x7卷积和池化层、1x1卷积短路下采样等结构。支持图像分类、特征图提取和图像嵌入功能,参数量44.5M,224x224输入下GMAC为7.8。在ImageNet验证集上Top-1准确率82.8%,Top-5准确率96.32%。
efficientnetv2_rw_m.agc_in1k - EfficientNetV2模型:图像分类与多功能特征提取
EfficientNet-v2GithubHuggingfaceImageNet-1ktimm图像分类开源项目模型模型使用
EfficientNetV2是一个在timm库中实现的高效图像分类模型。通过使用以ResNet Strikes Back为基础的训练策略和SGD优化器(带Nesterov动量),结合自适应梯度剪裁,模型在ImageNet-1k数据集上进行训练。这一架构轻量且强大,支持包括图像分类、特征提取和图像嵌入的多种图像处理任务。
resmlp_12_224.fb_in1k - ResMLP架构的数据高效图像分类模型
GithubHuggingfaceImageNetResMLP图像分类开源项目模型深度学习神经网络
resmlp_12_224.fb_in1k是Facebook Research团队基于ResMLP架构开发的图像分类模型,在ImageNet-1k数据集上训练。该模型采用前馈网络结构,拥有1540万参数,支持224x224像素图像处理。除图像分类外,还可作为特征提取骨干网络使用。通过timm库,研究者可方便地加载预训练模型进行图像分类或特征提取。该模型展现了数据高效训练在视觉任务中的潜力,为计算机视觉领域提供了新的解决方案。
pnasnet5large.tf_in1k - PNASNet大规模图像分类与特征提取模型
GithubHuggingfaceImageNet-1kPNasNet图像分类开源项目模型深度学习特征提取
pnasnet5large.tf_in1k是基于Progressive Neural Architecture Search技术开发的图像分类模型,在ImageNet-1k数据集上训练而成。该模型拥有8610万参数,计算量为25.0 GMACs,支持331x331像素的图像输入。它不仅可用于图像分类,还能进行特征图提取和图像嵌入。研究人员和开发者可通过timm库轻松调用此预训练模型,提高图像处理效率。
tf_efficientnetv2_s.in21k - EfficientNetV2图像分类模型 支持多种计算机视觉应用
EfficientNet-v2GithubHuggingfaceImageNet-21ktimm图像分类开源项目模型特征提取
tf_efficientnetv2_s.in21k是一个基于EfficientNet-v2架构的图像分类模型,在ImageNet-21k数据集上训练。该模型由TensorFlow原始训练,后移植至PyTorch,拥有4820万参数。模型支持图像分类、特征提取和图像嵌入等功能,适用于多种计算机视觉应用场景。通过timm库,开发者可以便捷地加载此预训练模型,实现图像分类、特征图提取或生成图像嵌入等任务。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号