Project Icon

inception_v3.tv_in1k

Inception-v3图像分类与特征提取深度学习模型

inception_v3.tv_in1k是基于Inception-v3架构的图像分类模型,通过ImageNet-1k数据集训练。该模型可用于图像分类和特征提取,参数量为23.8M,GMACs为5.7,适用于299x299分辨率图像。通过timm库,研究者可便捷加载预训练模型,执行图像分类、特征图提取和图像嵌入等任务,为计算机视觉研究提供有力工具。

wide_resnet101_2.tv_in1k - 宽残差网络101_2图像分类与特征提取功能
GithubHuggingfaceImageNet-1kReLU激活wide_resnet101_2.tv_in1k图像分类开源项目模型特征提取
Wide-ResNet101_2.tv_in1k是一种经ImageNet-1k数据训练的图像分类模型,采用ReLU激活、7x7卷积以及1x1卷积捷径降采样。该模型在图像分类和特征图提取方面表现优秀,可通过timm库轻松集成,是图像处理和计算机视觉领域的实用工具。
tf_mobilenetv3_small_minimal_100.in1k - MobileNetV3小型化模型:高效移动端图像分类
GithubHuggingfaceImageNet-1kMobileNet-v3timm图像分类开源项目模型特征提取
tf_mobilenetv3_small_minimal_100.in1k是一款针对移动设备优化的轻量级图像分类模型。基于MobileNet-v3架构,该模型在ImageNet-1k数据集上训练,仅有200万参数和0.1 GMACs,适用于224x224像素的图像输入。除图像分类外,它还可作为特征提取器用于其他计算机视觉任务。通过timm库,开发者可以方便地加载预训练模型,实现图像分类、特征图提取和图像嵌入等功能。这个模型平衡了性能和效率,特别适合资源受限的移动应用场景。
resnet50.tv_in1k - ResNet-B模型实现高效图像识别与分析
GithubHuggingfaceImageNetResNet-BTimm图像分类开源项目模型特征提取
ResNet-B模型是一款专为图像分类和特征提取而设计的工具,其特点包括ReLU激活和7x7卷积,适合224x224像素图像。在ImageNet-1k数据集上训练,具备优异的参数和计算性能。通过timm库,用户可以轻松将其应用于图像分类、特征提取和图像嵌入等多种场景。
convmixer_768_32.in1k - ConvMixer架构的高效图像分类与特征提取模型
GithubHuggingfacetimm卷积神经网络图像分类开源项目模型深度学习特征提取
convmixer_768_32.in1k是基于ConvMixer架构的图像分类模型,在ImageNet-1k数据集上训练完成。该模型拥有2110万参数,支持224x224像素的图像输入。除图像分类外,它还可用于生成图像嵌入。通过timm库,开发者能方便地加载预训练模型进行推理。这一设计简洁高效,为计算机视觉应用提供了实用的解决方案。
dla102.in1k - 深层聚合架构的图像分类模型 支持多种计算机视觉应用
GithubHuggingfaceImageNettimm图像分类开源项目模型深度层聚合特征提取
dla102.in1k是基于深层聚合架构的图像分类模型,在ImageNet-1k数据集上训练。模型拥有3330万参数,支持224x224像素输入。除图像分类外,还可用于特征图提取和图像嵌入。通过timm库可方便地调用此预训练模型,为计算机视觉应用提供灵活基础。模型在图像分类、特征提取等任务中表现出色,适用于多种视觉分析场景。
tf_mobilenetv3_large_minimal_100.in1k - MobileNetV3轻量级图像分类模型
GithubHuggingfaceImageNetMobileNet-v3pytorchtimm图像分类开源项目模型
tf_mobilenetv3_large_minimal_100.in1k是基于MobileNet-v3架构的图像分类模型,在ImageNet-1k数据集上训练。该模型参数量为3.9M,计算复杂度为0.2 GMACs,适用于资源受限的移动设备。模型支持图像分类、特征图提取和图像嵌入等功能。最初由TensorFlow团队开发,后由Ross Wightman移植到PyTorch平台,为开发者提供了多平台使用选择。
tinynet_a.in1k - 轻量级图像分类模型 TinyNet 实现高效特征提取
GithubHuggingfaceImageNetTinyNet图像分类开源项目模型深度学习神经网络
tinynet_a.in1k是基于ImageNet-1k数据集训练的轻量级图像分类模型。它仅有6.2M参数和0.3 GMACs,适用于192x192像素的图像处理。该模型可用于图像分类、特征图提取和图像嵌入,在资源受限环境中表现出色。通过timm库,开发者可以方便地使用预训练模型进行各种计算机视觉任务。tinynet_a.in1k在保持高效性能的同时,为图像处理应用提供了一个轻量化解决方案。
xception41.tf_in1k - Xception架构的高效图像分类神经网络
GithubHuggingfaceImageNet-1kXceptiontimm图像分类开源项目模型深度学习
xception41.tf_in1k是一款基于Xception架构的图像分类模型,在ImageNet-1k数据集上训练而成。该模型采用深度可分离卷积技术,拥有2700万参数和9.3 GMACs的计算量,支持图像分类、特征图提取和图像嵌入等功能。通过timm库,研究者可以方便地加载预训练模型进行推理或微调。xception41.tf_in1k在维持高精度的同时优化了计算效率,适用于多种计算机视觉任务。
tf_mobilenetv3_large_075.in1k - MobileNet-v3大规模图像分类与特征提取模型
GithubHuggingfaceImageNet-1kMobileNetV3图像分类开源项目模型深度学习特征图提取
该模型为MobileNet-v3图像分类模型,基于ImageNet-1k数据集在Tensorflow上训练,并由Ross Wightman移植至PyTorch实现。使用224x224图像,拥有4.0百万参数和0.2 GMACs的效率。提供代码示例,帮助实现图像分类、特征提取和图像嵌入。更详细的比较信息可于timm项目页面查阅。
tf_efficientnet_b0.in1k - 基于EfficientNet架构的tf_efficientnet_b0.in1k模型解析
EfficientNetGithubHuggingfaceImageNet-1ktimm图像分类开源项目模型特征提取
tf_efficientnet_b0.in1k是一个基于EfficientNet架构的图像分类模型,在ImageNet-1k数据集上使用Tensorflow训练,并由Ross Wightman移植到PyTorch。该模型具有5.3M参数和0.4 GMACs,支持细节丰富的224x224像素图像应用。其功能包括图像分类、特征映射提取和图像嵌入,非常适合在timm库中进行各种深度学习研究和应用,提供一种高效的图像处理方案。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号