项目介绍:levit_256.fb_dist_in1k
levit_256.fb_dist_in1k 是一个用于图像分类的模型,利用了卷积模式(使用 nn.Conv2d 和 nn.BatchNorm2d)。这个模型已经在 ImageNet-1k 数据集上经过蒸馏训练,由论文作者预训练完成。
模型详细信息
- 模型类型: 图像分类 / 特征骨干
- 模型统计数据:
- 参数量(百万): 18.9
- GMACs: 1.1
- 激活数(百万): 4.2
- 图像尺寸: 224 x 224
- 相关论文:
- LeViT: 像卷积网络一样扮演视觉转换器,提升推理速度: 论文链接
- 原始作者主页: GitHub链接
- 数据集: ImageNet-1k
模型用途
图像分类
使用代码示例展示如何利用该模型进行图像分类:
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(
urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'))
model = timm.create_model('levit_256.fb_dist_in1k', pretrained=True)
model = model.eval()
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0))
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
图像嵌入
模型还可以用于提取图像嵌入,具体代码示例如下:
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(
urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'))
model = timm.create_model(
'levit_256.fb_dist_in1k',
pretrained=True,
num_classes=0 # 移除分类器 nn.Linear
)
model = model.eval()
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0))
output = model.forward_features(transforms(img).unsqueeze(0))
output = model.forward_head(output, pre_logits=True)
模型比较
以下是 levit 系列模型的性能对比表:
Model | Top-1 Accuracy | Top-5 Accuracy | Parameter Count (M) | Image Size |
---|---|---|---|---|
levit_384.fb_dist_in1k | 82.596 | 96.012 | 39.13 | 224 |
levit_conv_384.fb_dist_in1k | 82.596 | 96.012 | 39.13 | 224 |
levit_256.fb_dist_in1k | 81.512 | 95.48 | 18.89 | 224 |
levit_conv_256.fb_dist_in1k | 81.512 | 95.48 | 18.89 | 224 |
levit_conv_192.fb_dist_in1k | 79.86 | 94.792 | 10.95 | 224 |
levit_192.fb_dist_in1k | 79.858 | 94.792 | 10.95 | 224 |
levit_128.fb_dist_in1k | 78.474 | 94.014 | 9.21 | 224 |
levit_conv_128.fb_dist_in1k | 78.474 | 94.02 | 9.21 | 224 |
levit_128s.fb_dist_in1k | 76.534 | 92.864 | 7.78 | 224 |
levit_conv_128s.fb_dist_in1k | 76.532 | 92.864 | 7.78 | 224 |
引用
如果要引用此模型的论文或相关工作,请参考以下文献格式:
@InProceedings{Graham_2021_ICCV,
author = {Graham, Benjamin and El-Nouby, Alaaeldin and Touvron, Hugo and Stock, Pierre and Joulin, Armand and Jegou, Herve and Douze, Matthijs},
title = {LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference},
booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
month = {October},
year = {2021},
pages = {12259-12269}
}
@misc{rw2019timm,
author = {Ross Wightman},
title = {PyTorch Image Models},
year = {2019},
publisher = {GitHub},
journal = {GitHub repository},
doi = {10.5281/zenodo.4414861},
howpublished = {\url{https://github.com/rwightman/pytorch-image-models}}
}