Project Icon

mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k

高效图像分类与特征提取模型 支持移动设备应用

MobileNet-V4图像分类模型经过ImageNet-12k预训练和ImageNet-1k精细调整,优化了参数和图像处理能力。该模型适用于移动设备,并支持特征提取和图像嵌入。凭借出色的Top-1准确率和参数效率,它在同类模型中表现突出,提供快速准确的图像识别能力。

tf_mobilenetv3_large_075.in1k - MobileNet-v3大规模图像分类与特征提取模型
GithubHuggingfaceImageNet-1kMobileNetV3图像分类开源项目模型深度学习特征图提取
该模型为MobileNet-v3图像分类模型,基于ImageNet-1k数据集在Tensorflow上训练,并由Ross Wightman移植至PyTorch实现。使用224x224图像,拥有4.0百万参数和0.2 GMACs的效率。提供代码示例,帮助实现图像分类、特征提取和图像嵌入。更详细的比较信息可于timm项目页面查阅。
mobilevitv2_075.cvnets_in1k - MobileViT-v2:高效的移动视觉变换器图像分类解决方案
GithubHuggingfaceImageNet-1kMobileViT-v2Separable Self-attention图像分类开源项目模型特征提取
MobileViT-v2是一个高效的移动视觉变换器模型,利用分离自注意力机制优化了图像分类与特征提取。经过ImageNet-1k数据集训练,该模型适配多种计算机视觉任务。模型规格包括2.9M参数和1.1 GMAC,支持256x256图像输入。借助timm库,模型可轻松集成至移动设备的视觉处理应用中。
efficientnetv2_rw_m.agc_in1k - EfficientNetV2模型:图像分类与多功能特征提取
EfficientNet-v2GithubHuggingfaceImageNet-1ktimm图像分类开源项目模型模型使用
EfficientNetV2是一个在timm库中实现的高效图像分类模型。通过使用以ResNet Strikes Back为基础的训练策略和SGD优化器(带Nesterov动量),结合自适应梯度剪裁,模型在ImageNet-1k数据集上进行训练。这一架构轻量且强大,支持包括图像分类、特征提取和图像嵌入的多种图像处理任务。
tf_efficientnetv2_xl.in21k_ft_in1k - EfficientNet-v2开源图像分类与特征抽取模型
EfficientNet-v2GithubHuggingfaceImageNet-21kTensorFlowtimm图像分类开源项目模型
EfficientNet-v2模型在ImageNet-21k上预训练并在ImageNet-1k上微调,具备图像分类、特征提取与图像嵌入功能。初始使用Tensorflow训练,后由Ross Wightman移植至PyTorch。模型拥有208.1百万参数与52.8 GMACs计算量,支持训练时384x384与测试时512x512的图像尺寸。通过timm库,便可创建预训练模型,用于图像分类及特征映射。本模型在研究与应用中表现出强大的性能及灵活性。
efficientnet_b4.ra2_in1k - EfficientNet B4图像分类模型 ImageNet-1k数据集训练
EfficientNetGithubHuggingfaceImageNettimm图像分类开源项目模型深度学习
efficientnet_b4.ra2_in1k是基于EfficientNet架构的图像分类模型,在ImageNet-1k数据集上训练。该模型采用RandAugment RA2增强方法,使用RMSProp优化器,具有1930万参数和3.1 GMACs计算量。支持320x320训练图像和384x384测试图像,可用于图像分类、特征提取和嵌入等任务,为计算机视觉领域提供高效解决方案。
convnext_small.in12k_ft_in1k_384 - 高效的ConvNeXt图像分类与特征提取预训练模型介绍
ConvNeXtGithubHuggingfaceImageNettimm图像分类开源项目模型预训练
ConvNeXt图像分类模型,通过timm库在ImageNet-12k及ImageNet-1k上进行预训练与微调,提供图像特征提取与分类功能。支持TPU和8xGPU训练方式,适合大规模数据集处理。模型拥有50.2M参数和25.6 GMACs,支持384x384图像输入,并兼具特征图提取与图像嵌入功能,适用于高效图像处理需求。更多性能数据及结果可在timm库查阅。
mobilevit_xs.cvnets_in1k - MobileViT 轻量级通用移动友好的视觉Transformer
GithubHuggingfaceImageNet-1kMobileViTtimm图像分类开源项目模型特征提取
MobileViT是一种轻量级视觉Transformer模型,专为移动设备设计。mobilevit_xs.cvnets_in1k版本在ImageNet-1k数据集上训练,仅有2.3M参数和1.1 GMACs计算量。该模型适用于图像分类、特征提取和嵌入生成等任务,平衡了性能和资源消耗。它融合了MobileNet的轻量化结构和Vision Transformer的强大特性,为资源受限环境提供了高效解决方案。
efficientnet-b0 - EfficientNet的复合系数法在资源有限设备上提升图像分类效果
EfficientNetGithubHuggingfaceImageNet卷积神经网络图像分类开源项目模型模型缩放
EfficientNet是一种训练于ImageNet-1k数据集、分辨率为224x224的卷积模型。该模型提出了复合系数方法,以均衡缩放模型的深度、宽度和分辨率。在移动设备上表现卓越,适用于图像分类。同时,用户可在Hugging Face平台上获取特定任务的微调版本。
convnextv2_base.fcmae_ft_in22k_in1k - 多功能图像分类与特征提取模型
ConvNeXt-V2GithubHuggingfaceImageNettimm图像分类开源项目模型预训练模型
ConvNeXt-V2是一款先进的图像分类模型,通过全卷积掩码自编码器框架(FCMAE)预训练,并在ImageNet-22k和ImageNet-1k数据集上微调。除图像分类外,该模型还可用于特征图提取和图像嵌入。拥有8870万参数,ConvNeXt-V2在ImageNet-1k验证集上实现86.74%的Top-1准确率。凭借在多项基准测试中的卓越表现,ConvNeXt-V2成为各类计算机视觉任务的优秀选择。
convnext_base.fb_in22k_ft_in1k_384 - 高效的ConvNeXt图像分类解决方案
ConvNeXtGithubHuggingfaceImageNet图像分类开源项目模型模型对比特征提取
ConvNeXt图像分类模型经过ImageNet-22k的预训练和ImageNet-1k的微调,以384x384分辨率高效执行分类任务。拥有88.6M参数和45.2 GMACs,支持图像分类、特征提取和图像嵌入等功能。适用于多种机器学习任务,其高分辨率处理能力使其在深度学习领域具有良好表现。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号