Project Icon

regnety_120.sw_in12k_ft_in1k

高级图像分类模型,优化大规模数据集的性能

RegNetY-12GF模型致力于图像分类,先在ImageNet-12k上预训练,再在ImageNet-1k上微调。其结构支持多项增强功能,如随机深度和梯度检查点,提高模型准确性和效率。基于timm库实现,广泛用于特征图提取和图像嵌入,适用于多种图像处理场景。

vit_large_patch14_clip_224.openai_ft_in12k_in1k - 视觉变压器用于图像分类和特征嵌入的高级应用
CLIPGithubHuggingfaceVision TransformerWIT-400M图像分类开源项目模型模型比较
OpenAI开发的视觉变压器(ViT)模型在WIT-400M图像文本对上通过CLIP进行预训练,并在ImageNet-12k和ImageNet-1k上微调,适用于图像分类与特征嵌入生成。模型运行在timm库中,具有高参数量与计算效率,适用于高精度图像识别,支持实时与批量处理应用。
HorNet - 基于递归门控卷积的高效视觉骨干网络
GithubHorNetImageNetPyTorchRecursive Gated Convolution开源项目高阶空间交互
HorNet是一个基于递归门控卷积的视觉骨干网络家族,专注于高效的高阶空间交互。项目提供了多个在ImageNet数据集上训练和评估的模型,如HorNet-T、HorNet-S和HorNet-B,广泛应用于图像分类和点云理解等领域。项目页面提供详细的训练和评估说明及模型下载链接。HorNet在提升图像和3D对象分类精度方面表现优异,是计算机视觉研究中的重要工具。
detr-resnet-50 - DETR 基于Transformer的创新目标检测模型
COCO数据集DETRGithubHuggingfaceResNet-50Transformer开源项目模型目标检测
DETR-ResNet-50是一种创新的目标检测模型,融合Transformer架构与ResNet-50骨干网络。该模型采用端到端训练方法,简化了传统目标检测流程。经COCO 2017数据集训练后,DETR能高效检测和定位图像中的多个物体,在目标检测任务中实现42.0的平均精度(AP)。其简洁设计和卓越性能为计算机视觉领域带来新的可能。
Retinexformer - Retinexformer:高效低光照图像增强工具,支持15个基准测试和超高分辨率
GithubICCV 2023NTIRE 2024Retinexformer低光照图像增强开源项目高分辨率图像
Retinexformer是一个低光照图像增强项目,支持超过15个基准测试和超高分辨率图像(最高4000x6000)。该项目在NTIRE 2024挑战中获得第二名,提供代码、预训练模型和训练日志。Retinexformer框架支持分布式数据并行和混合精度训练,自适应分割测试策略显著提升模型性能。
LeYOLO - 可扩展高效的目标检测CNN架构
COCO数据集GithubLeYOLO开源项目目标检测神经网络计算效率
LeYOLO是一种新型目标检测模型系列,通过创新的CNN架构设计实现了计算效率与准确性的优化平衡。该模型引入高效主干网络缩放、快速金字塔架构网络和解耦网络中的网络检测头,大幅降低计算负载。在COCO验证集上,LeYOLO-Small仅使用4.5 GFLOP就达到38.2%的mAP,比YOLOv9-Tiny减少42%计算量。LeYOLO系列具有强大可扩展性,适用于从超低计算需求(<1 GFLOP)到高效高性能(>4 GFLOPs)的多种场景。
deit3_base_patch16_224.fb_in1k - ImageNet-1k图像分类与嵌入的DeiT-III解决方案
DeiT-IIIGithubHuggingfaceImage EmbeddingsImageNet-1k图像分类开源项目模型模型比较
DeiT-III是一款经过ImageNet-1k训练的图像分类和嵌入模型,拥有86.6M参数以及17.6 GMACs。该模型可以进行图像特征提取与多任务处理,适用于各种视觉应用。对于图形识别及计算机视觉项目的从业者而言,其为ViT提供了一个新的升级途径。
Renate - 自动神经网络再训练的持续学习解决方案
GithubPyTorchRenate开源项目持续学习模型重训练神经网络
Renate是一个用于神经网络模型自动再训练的Python库,采用持续学习和终身学习算法。基于PyTorch和Lightning构建,通过Syne Tune实现超参数优化。该工具专门解决数据分布变化引起的灾难性遗忘问题,提升模型对新数据的适应能力。Renate支持云端部署,适合实际再训练场景,并提供便捷的高级超参数优化功能。
notebooks - 使用 SOTA 计算机视觉模型和技术的示例和教程
DETRGPT-4 VisionGithubRoboflowYOLO开源项目计算机视觉
提供详尽的计算机视觉教程,包括ResNet、YOLO、DETR等经典模型,以及最新的Grounding DINO、SAM和GPT-4 Vision技术。这个资源库适合初学者和专家学习最前沿的计算机视觉方法和应用。
image-super-resolution - Keras实现的高质量图像超分辨率,支持多种网络结构和训练脚本
GANGithubImage Super-ResolutionKerasPSNRResidual Dense Networks开源项目
本项目旨在通过实现多种残差密集网络(RDN)和残差在残差密集网络(RRDN)来提升低分辨率图像的质量,并支持Keras框架。项目提供了预训练模型、训练脚本以及用于云端训练的Docker脚本。适用于图像超分辨率处理,兼容Python 3.6,开源并欢迎贡献。
LlamaGen - 自回归模型在图像生成中的应用和优势
AR模型GithubHugging FaceLlamaGen图像生成开源项目自回归模型
LlamaGen项目展示了自回归模型在图像生成中的潜力,通过无偏视觉信号和大规模数据训练,实现了媲美扩散模型的性能。该项目发布了多种图像tokenizer和生成模型,支持从100M到3B参数的多种配置,并提供在线演示和高效的vLLM服务框架。访问项目页面和在线demo,体验这些创新模型的强大功能。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号