Project Icon

spnasnet_100.rmsp_in1k

使用Single-Path NAS技术设计的轻量级图像分类模型

spnasnet_100.rmsp_in1k是基于Single-Path NAS技术的轻量级图像分类模型,在ImageNet-1k数据集上训练。模型仅有440万参数和0.3 GMACs,适合资源受限场景。支持图像分类、特征图提取和图像嵌入等应用。通过timm库可轻松加载此预训练模型进行推理或微调。模型采用RMSProp优化器和指数衰减学习率调度,在保持高效性的同时确保了分类性能。

hrnet_w18.ms_aug_in1k - HRNet W18图像分类模型 基于ImageNet-1k训练
GithubHRNetHuggingfaceImageNet-1ktimm图像分类开源项目模型特征提取
hrnet_w18.ms_aug_in1k是HRNet团队开发的图像分类模型,在ImageNet-1k数据集上训练。该模型拥有2130万参数,4.3 GMACs计算复杂度,可用于图像分类、特征图提取和图像嵌入。模型提供高分辨率视觉表征,适用于多种计算机视觉任务。通过timm库可方便地加载和使用这一预训练模型。
resnet18.a1_in1k - ResNet18图像分类模型 适用于多种计算机视觉任务
GithubHuggingfaceResNettimm图像分类开源项目模型深度学习神经网络
resnet18.a1_in1k是基于ResNet-B架构的图像分类模型,在ImageNet-1k数据集上训练。它采用ReLU激活函数、单层7x7卷积等特性,支持图像分类、特征提取和嵌入等任务。该模型有1170万参数,在224x224分辨率下计算量为1.8 GMACs,可用于多种计算机视觉应用。
res2net101_26w_4s.in1k - Res2Net101多尺度骨干网络实现高效图像分类和特征提取
GithubHuggingfaceImageNet-1kRes2Nettimm图像分类开源项目模型特征提取
res2net101_26w_4s.in1k是基于Res2Net架构的图像分类模型,通过ImageNet-1k数据集训练而成。该模型采用多尺度设计,在图像分类和特征提取方面表现优异。它拥有4520万个参数,适用于224x224尺寸的图像处理。除图像分类外,还支持特征图提取和图像嵌入功能。研究人员和开发者可通过timm库便捷地将此模型应用于多种计算机视觉任务。
resnet34.a1_in1k - ResNet34 A1变体:轻量级高效图像分类模型
GithubHuggingfaceResNettimm图像分类开源项目模型模型训练深度学习
resnet34.a1_in1k是一种轻量级ResNet变体,在ImageNet-1k上训练。该模型采用ResNet-B架构,结合ReLU激活、7x7卷积和1x1短路下采样。训练过程使用LAMB优化器、BCE损失和余弦学习率。作为通用骨干网络,它适用于图像分类、特征提取和嵌入生成,在维持性能的同时显著降低了计算复杂度。
resnet50_gn.a1h_in1k - ResNet-B架构图像分类模型结合先进训练方法
GithubHuggingfaceImageNetResNettimm图像分类开源项目模型神经网络
resnet50_gn.a1h_in1k是基于ResNet-B架构的图像分类模型,集成了多项先进训练技术。模型采用ReLU激活函数、单层7x7卷积与池化、1x1卷积快捷连接下采样等结构。在ImageNet-1k数据集上训练时,应用了LAMB优化器、增强型dropout、随机深度和RandAugment等方法。模型参数量为25.6M,GMACs为4.1,训练输入尺寸为224x224,测试输入尺寸为288x288。该模型可应用于图像分类、特征提取和图像嵌入等多种计算机视觉任务。
inception_resnet_v2.tf_in1k - Inception-ResNet-v2架构的图像分类与特征提取模型
GithubHuggingfaceImageNet-1kinception_resnet_v2timm图像分类开源项目模型特征提取
inception_resnet_v2.tf_in1k是基于Inception-ResNet-v2架构的图像分类模型,在ImageNet-1k数据集上训练。模型拥有5580万参数,13.2 GMACs计算量,适用于299x299像素的输入图像。除图像分类外,该模型还支持特征图提取和图像嵌入功能。它在保持较低计算复杂度的同时提供高精度图像识别能力,适用于多种计算机视觉任务。
tf_mobilenetv3_large_minimal_100.in1k - MobileNetV3轻量级图像分类模型
GithubHuggingfaceImageNetMobileNet-v3pytorchtimm图像分类开源项目模型
tf_mobilenetv3_large_minimal_100.in1k是基于MobileNet-v3架构的图像分类模型,在ImageNet-1k数据集上训练。该模型参数量为3.9M,计算复杂度为0.2 GMACs,适用于资源受限的移动设备。模型支持图像分类、特征图提取和图像嵌入等功能。最初由TensorFlow团队开发,后由Ross Wightman移植到PyTorch平台,为开发者提供了多平台使用选择。
tf_efficientnet_lite0.in1k - 轻量级EfficientNet-Lite模型实现高效图像分类与特征提取
EfficientNet-LiteGithubHuggingfaceImageNet-1k图像分类开源项目模型模型对比特征提取
EfficientNet-Lite0是一款专为高效图像分类和特征提取设计的模型,经过ImageNet-1k训练。该模型已被迁移至PyTorch,并利用timm库进行图像嵌入和特征图提取。在4.7M参数和0.4 GMACs的架构下,实现了高效性能与计算资源节约,适合作为多种视觉任务的解决方案。
dm_nfnet_f0.dm_in1k - NFNet:无归一化层的高效图像分类模型
GithubHuggingfaceImageNet-1kNFNettimm图像分类开源项目模型特征提取
dm_nfnet_f0.dm_in1k是一款基于NFNet(无归一化网络)架构的图像分类模型。该模型在ImageNet-1k数据集上训练,拥有7150万参数,计算量为7.2 GMACs。通过采用Scaled Weight Standardization技术和策略性放置的标量增益,该模型无需使用归一化层即可实现高性能。dm_nfnet_f0.dm_in1k适用于图像分类、特征提取和图像嵌入等多种任务,为大规模图像识别应用提供了高效解决方案。
convnext_nano.in12k_ft_in1k - 基于ConvNeXt架构的轻量级图像分类模型
ConvNeXtGithubHuggingfaceImageNettimm图像分类开源项目模型特征提取
convnext_nano.in12k_ft_in1k是基于ConvNeXt架构开发的轻量级图像分类模型,模型参数量1560万,在ImageNet-12k数据集预训练后在ImageNet-1k微调。支持图像分类、特征提取和嵌入向量生成等功能,适用于计算资源受限环境下的视觉任务。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号