Project Icon

tf_efficientnetv2_s.in21k_ft_in1k

EfficientNet-v2图像分类模型 基于双重ImageNet数据集训练

这是一个基于EfficientNet-v2架构的图像分类模型,采用ImageNet-21k预训练和ImageNet-1k微调策略。模型参数量为2150万,计算量为5.4 GMACs,支持图像分类、特征提取和图像嵌入等多种应用。训练采用300x300分辨率,测试时提升至384x384,在性能和效率之间实现良好平衡。该模型最初由论文作者在Tensorflow中实现,后由Ross Wightman移植至PyTorch框架。

tf_efficientnetv2_m.in21k_ft_in1k - EfficientNetV2的图片识别与特征提取
EfficientNet-v2GithubHuggingface图像分类图像嵌入开源项目模型深度学习特征提取
EfficientNetV2模型在ImageNet-21k数据集上预训练,并在ImageNet-1k上微调,最初使用TensorFlow构建,由Ross Wightman移植至PyTorch。其参数量为54.1M,能够在不同分辨率下实现精确的图像识别,并支持通过timm库执行图像分类、特征提取和嵌入生成等多任务。
tf_efficientnetv2_xl.in21k_ft_in1k - EfficientNet-v2开源图像分类与特征抽取模型
EfficientNet-v2GithubHuggingfaceImageNet-21kTensorFlowtimm图像分类开源项目模型
EfficientNet-v2模型在ImageNet-21k上预训练并在ImageNet-1k上微调,具备图像分类、特征提取与图像嵌入功能。初始使用Tensorflow训练,后由Ross Wightman移植至PyTorch。模型拥有208.1百万参数与52.8 GMACs计算量,支持训练时384x384与测试时512x512的图像尺寸。通过timm库,便可创建预训练模型,用于图像分类及特征映射。本模型在研究与应用中表现出强大的性能及灵活性。
tf_efficientnetv2_s.in21k - EfficientNetV2图像分类模型 支持多种计算机视觉应用
EfficientNet-v2GithubHuggingfaceImageNet-21ktimm图像分类开源项目模型特征提取
tf_efficientnetv2_s.in21k是一个基于EfficientNet-v2架构的图像分类模型,在ImageNet-21k数据集上训练。该模型由TensorFlow原始训练,后移植至PyTorch,拥有4820万参数。模型支持图像分类、特征提取和图像嵌入等功能,适用于多种计算机视觉应用场景。通过timm库,开发者可以便捷地加载此预训练模型,实现图像分类、特征图提取或生成图像嵌入等任务。
tf_efficientnetv2_b0.in1k - 轻量高效的图像分类解决方案
EfficientNet-v2GithubHuggingfaceImageNettimm图像分类开源项目模型特征提取
EfficientNetV2-B0是EfficientNet-v2系列中的轻量级模型,由谷歌研究团队开发并在ImageNet-1k数据集上训练。模型参数仅7.1M,GMACs为0.5,在保持较高准确率的同时大幅降低计算复杂度。除图像分类外,还可用于特征提取和生成图像嵌入。该模型适用于资源受限的环境,如移动设备和边缘计算场景,为开发者提供了高效的图像处理解决方案。
efficientnet_b1.ft_in1k - 基于ImageNet-1k微调的EfficientNet图像分类模型
EfficientNetGithubHuggingfaceImageNet-1kPyTorch图像分类开源项目模型特征图提取
EfficientNet图像分类模型已在ImageNet-1k上进行微调,适用于PyTorch。该模型参数为7.8M,支持特征图提取和图像嵌入,可用作高效的图像分类工具。
tf_efficientnet_l2.ns_jft_in1k - EfficientNet架构的大规模图像识别与特征提取模型
EfficientNetGithubHuggingfaceImageNet图像分类开源项目模型深度学习神经网络
基于EfficientNet架构开发的图像分类模型,采用Noisy Student半监督学习方法,结合ImageNet-1k和JFT-300m数据集进行训练。模型支持800x800分辨率输入,包含4.8亿参数,可用于图像分类、特征提取和嵌入向量生成。借助timm库实现模型的快速部署,适用于各类图像识别任务。
efficientnetv2_rw_m.agc_in1k - EfficientNetV2模型:图像分类与多功能特征提取
EfficientNet-v2GithubHuggingfaceImageNet-1ktimm图像分类开源项目模型模型使用
EfficientNetV2是一个在timm库中实现的高效图像分类模型。通过使用以ResNet Strikes Back为基础的训练策略和SGD优化器(带Nesterov动量),结合自适应梯度剪裁,模型在ImageNet-1k数据集上进行训练。这一架构轻量且强大,支持包括图像分类、特征提取和图像嵌入的多种图像处理任务。
tf_efficientnet_lite0.in1k - 轻量级EfficientNet-Lite模型实现高效图像分类与特征提取
EfficientNet-LiteGithubHuggingfaceImageNet-1k图像分类开源项目模型模型对比特征提取
EfficientNet-Lite0是一款专为高效图像分类和特征提取设计的模型,经过ImageNet-1k训练。该模型已被迁移至PyTorch,并利用timm库进行图像嵌入和特征图提取。在4.7M参数和0.4 GMACs的架构下,实现了高效性能与计算资源节约,适合作为多种视觉任务的解决方案。
efficientnetv2_rw_s.ra2_in1k - EfficientNetV2架构的轻量级图像分类模型
EfficientNetV2GithubHuggingfaceImageNet图像分类开源项目机器学习模型模型深度学习
基于EfficientNetV2架构的图像分类模型,通过timm框架实现,使用RandAugment数据增强和RMSProp优化器在ImageNet-1k数据集训练。模型参数量23.9M,计算量4.9 GMACs,训练分辨率288x288,测试分辨率384x384。支持图像分类、特征图提取和图像嵌入等功能。
tf_efficientnet_b0.in1k - 基于EfficientNet架构的tf_efficientnet_b0.in1k模型解析
EfficientNetGithubHuggingfaceImageNet-1ktimm图像分类开源项目模型特征提取
tf_efficientnet_b0.in1k是一个基于EfficientNet架构的图像分类模型,在ImageNet-1k数据集上使用Tensorflow训练,并由Ross Wightman移植到PyTorch。该模型具有5.3M参数和0.4 GMACs,支持细节丰富的224x224像素图像应用。其功能包括图像分类、特征映射提取和图像嵌入,非常适合在timm库中进行各种深度学习研究和应用,提供一种高效的图像处理方案。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号