Project Icon

vit_large_patch14_clip_336.openai

通过CLIP模型探索计算机视觉鲁棒性

OpenAI开发的CLIP模型通过ViT-L/14 (336x336)架构提高视觉任务的鲁棒性,专注于零样本图像分类,供研究人员深入探索。这个模型针对英语场景,其数据主要源自发达国家的互联网用户,目前不建议用于商用部署,但在学术界具备多学科研究的重要价值。

CogVLM - 开源视觉语言模型,提升图像理解与跨模态对话功能
CogAgentCogVLMGithub图像理解多回合对话开源项目跨模态基准测试
CogVLM和CogAgent是领先的开源视觉语言模型,专注于图像理解和跨模态任务。CogVLM-17B拥有100亿视觉参数和70亿语言参数,并在NoCaps、Flicker30k等十个经典跨模态基准测试上表现出色。CogAgent在CogVLM的基础上改进,增添了GUI图像代理能力,支持1120*1120分辨率的图像理解,并在VQAv2、TextVQA等九个基准测试中表现优秀。该项目提供详细的技术文档、示例代码和Web演示,用户可以方便地进行模型推理和微调。了解更多信息,请访问项目主页。
VisualGLM-6B - 一个具备处理图像、中文和英文的能力的开源多模态对话语言模型
GithubVisualGLM-6B图像描述多模态对话模型开源开源项目微调
VisualGLM-6B是一个开源多模态对话语言模型,具备处理图像、中文和英文的能力。该模型继承自强大的ChatGLM-6B基础,增添了6.2亿参数,整合了先进的BLIP2-Qformer技术,达到了语言和视觉数据的高效融合。模型总参数量为7.8亿,展现在多个核心多模态任务上的卓越效能。针对各种应用场景均进行了优化,支持在消费级显卡上运行,降低了使用门槛,拓展了其在学术研究和实务应用中的潜力。
blip-image-captioning-base - BLIP框架打造的先进图像描述生成模型
BLIPGithubHuggingface图像字幕图像理解多模态开源项目模型视觉语言预训练
blip-image-captioning-base是基于BLIP框架的图像描述生成模型,在COCO数据集上预训练。模型适用于条件和无条件图像描述任务,在图像-文本检索、图像描述和视觉问答等视觉语言任务中表现优异。它具有出色的泛化能力,可零样本迁移至视频语言任务。支持CPU和GPU运行,包括半精度模式,为开发者提供高效的图像描述生成工具。
GPT4RoI - 大型语言模型的区域感知能力优化
GPT4RoIGithubLLaMA模型区域感兴趣调整大型语言模型开源项目视觉认知
GPT4RoI项目专注于优化大型语言模型的区域感知能力,发布新版本GPT4RoI-7B-delta-V0来提升性能。该项目提供完整的训练与推理代码,并有在线演示以提升用户体验。项目包含了详尽的数据集和权重处理方法,便于研究者和开发者有效应用于区域相关的语言模型任务。
ALLaVA - GPT4V合成数据集助力轻量级视觉语言模型训练
ALLaVAGPT-4VGithub开源项目微调数据集视觉语言模型
ALLaVA项目推出大规模GPT4V合成数据集,旨在促进轻量级视觉语言模型的训练。项目发布了ALLaVA-Phi3-mini-128k、ALLaVA-StableLM2-1_6B和ALLaVA-Phi2-2_7B等多个模型版本,可直接从Hugging Face仓库加载。ALLaVA-4V数据集整合了LAION和Vision FLAN的图像标注与指令数据,以及GPT-4-Turbo生成的文本指令,总样本量超过140万。这一资源为视觉语言模型研究提供了丰富的训练数据和预训练模型,有望推动该领域的进一步发展。
albert-xxlarge-v1 - 大型英文数据集上的预训练语言模型
ALBERT XXLarge v1GithubHuggingface开源项目机器学习模型模型微调深度学习自监督学习
ALBERT-XXLarge-v1 是一种在大规模英语数据集上通过自监督学习预训练的模型,采用掩蔽语言建模和句子顺序预测技术。该模型通过重复层的共享权重设计实现了较小的内存占用,但计算成本与同类模型相当,适用于序列分类和问答等需全面句子理解的任务。虽然它具备出色性能,应用时需注意潜在偏见。
LAVIS - 多任务语言与视觉模型的统一接口和便捷数据下载工具
BLIPGithubLAVISSalesforceX-InstructBLIPlanguage-vision开源项目
LAVIS是一款用于语言与视觉智能研究的Python库,提供统一接口,支持图像文本预训练、检索和视觉问答等10多种任务,并包含20多个数据集和30多个预训练模型。其模块化设计和自动下载工具简化了数据准备和模型训练,是开发多模态应用的理想选择。
DeepSeek-VL - 高性能开源视觉语言模型 多模态理解与复杂场景应用
DeepSeek-VLGithub人工智能多模态理解开源开源项目视觉语言模型
DeepSeek-VL是一个开源视觉语言模型,为实际应用场景而设计。它能处理逻辑图表、网页、公式、科学文献、自然图像等,并在复杂场景中展现智能。模型提供1.3B和7B两种参数规模,支持基础和对话应用,可用于学术研究和商业用途。DeepSeek-VL采用MIT许可证,为研究人员和开发者提供了强大的视觉语言处理工具。
VLM_survey - 用于视觉任务的 AWESOME 视觉语言模型集合
GithubVision-Language Models开源项目数据集知识蒸馏视觉识别任务预训练方法
本页面详尽介绍了视觉语言模型(VLM)在视觉识别任务中的应用和发展。内容涵盖VLM的起源、常用架构、预训练目标、主流数据集及不同的预训练方式、迁移学习和知识蒸馏方法,并针对这些方法进行了详细的基准测试和分析。页面还讨论了未来研究的挑战和方向,让用户掌握VLM技术在图像分类、对象检测和语义分割等任务中的最新应用进展。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号