Project Icon

ns3-gym

将强化学习引入网络仿真研究的创新框架

ns3-gym是一个整合OpenAI Gym和ns-3的开源框架,旨在促进强化学习在网络研究中的应用。该项目提供了自定义仿真环境的能力,包含认知无线电和RL-TCP等实例。通过详细的文档和示例,ns3-gym为研究人员提供了探索机器学习在网络优化领域潜力的平台。项目提供了完整的安装指南和API文档,便于研究者快速上手。ns3-gym的灵活架构支持各种网络场景的模拟,为网络协议和通信技术的创新研究开辟了新途径。

Reinforcement-Learning - 将深度强化学习与神经网络使用Python和PyTorch实现结合的课程
GithubPyTorchPythonQ学习开源项目深度强化学习神经网络
本课程深入分析了神经网络与强化学习的结合,提供了Python和PyTorch实用实现。掌握Q学习、深度Q学习、PPO和演员批评算法,通过在OpenAI Gym的RoboSchool和Atari游戏中实际应用,熟悉深度强化学习的关键技术和应用场景。
arena - 多样化强化学习环境平台,支持多种游戏和学习模式
AI训练DIAMBRA ArenaGithub对抗学习开源项目强化学习游戏环境
DIAMBRA Arena是一个开源的强化学习环境平台,集成了多款经典街机格斗游戏。它提供符合OpenAI Gym/Gymnasium标准的Python接口,支持单人和双人模式,适用于多种强化学习研究场景。该平台兼容主流操作系统,安装简便,并配有详细文档和示例。用户注册后可免费使用,还能参与在线竞赛。
rl-baselines3-zoo - Stable Baselines3 强化学习代理的训练框架,包括超参数优化和预训练代理
GithubRL Baselines3 ZooStable Baselines3开源项目强化学习训练框架超参数调整
RL Baselines3 Zoo提供一个灵活的训练框架支持众多增强学习算法和环境。此框架便于进行算法基准测试、调优以及AI模型的训练和评估。已集成200多个预训练智能体,并配备全面的文档和安装指南,适合科研和开发使用。
stable-baselines3-contrib - 实验性强化学习算法和工具
GithubGym WrappersStable-Baselines3rl算法sb3-contrib开源项目文档
提供最新的实验性强化学习算法和工具,保持稳定基线风格和文档,适用于更广泛的实际应用需求。包括增强随机搜索(ARS)和量化回归DQN(QR-DQN)等算法,以及适用于Gym环境的包装器。适合需要超越主存储库限制且仍需高可靠性的用户。
MO-Gymnasium - 标准化多目标强化学习环境和算法开发平台
GithubMO-GymnasiumPython库多目标强化学习开源项目环境API算法开发
MO-Gymnasium是一个开源Python库,为多目标强化学习(MORL)算法提供标准化开发和比较平台。它基于Gymnasium API,提供返回向量化奖励的环境集合,包括MORL文献中的环境和经典环境的多目标版本。该库支持简单的环境创建和交互,并提供LinearReward包装器实现奖励函数标量化。MO-Gymnasium采用严格的版本控制,保证实验可重复性,是MORL研究和基准测试的理想工具。
awesome-deep-rl - 全面的深度强化学习资源库
Github基准测试开源库开源项目深度强化学习环境模拟竞赛
该项目汇集了深度强化学习领域的各类资源,包括主流库、基准测试结果、训练环境、竞赛信息和发展时间线。研究人员和开发者可以在此快速了解该领域的全貌,获取有价值的工具和信息。作为一个综合性资源库,它为深度强化学习的学习和研究提供了便利。
gym-pybullet-drones - 轻量级无人机仿真环境 助力强化学习与控制算法研究
GithubPyBullet仿真开源项目强化学习控制无人机
gym-pybullet-drones是基于PyBullet的轻量级无人机仿真环境,用于强化学习和控制算法研究。支持多机协同飞行、PID控制和下洗效应模拟,兼容Gymnasium、Stable-Baselines3等框架。集成SITL仿真和固件,为无人机算法开发和测试提供灵活高效的平台。
gymnax - JAX驱动的高效强化学习环境集合
GithubJAXgymnax加速计算开源项目强化学习环境仿真
gymnax是基于JAX构建的强化学习环境库,充分利用JAX的即时编译和向量化功能,显著提升了传统gym API的性能。该库涵盖经典控制、bsuite和MinAtar等多种环境,支持精确控制环境参数。通过在加速器上并行处理环境和策略,gymnax实现了高效的强化学习实验,尤其适合大规模并行和元强化学习研究。
tmrl - 实时机器人控制与自动驾驶AI的分布式强化学习框架
GithubGymnasium环境TMRLTrackMania 2020开源项目强化学习自动驾驶
TMRL是一个面向机器人学习的分布式强化学习框架,专注于实时应用中的深度强化学习AI训练。该框架以TrackMania 2020游戏为例,展示了基于原始截图的自动驾驶控制。TMRL具备安全远程训练、灵活定制和实时环境兼容性等特点,采用单服务器多客户端架构,可在多个节点收集样本并在高性能集群上进行训练。
leetcode-hard-gym - 用于评估代码生成智能体的LeetCode强化学习环境
GithubLeetcode-Hard Gym代码生成开源项目强化学习环境接口编程语言
leetcode-hard-gym是一个基于OpenAI gym的强化学习环境,连接LeetCode提交服务器,用于评估代码生成智能体。该项目支持多种编程语言,并提供脚本构建未污染的LeetCode困难题目数据集。研究人员可以通过此环境设置、提交代码并获取评估结果,为代码生成研究提供便利工具。项目还包含一个排行榜,展示了不同AI模型在LeetCode困难题目上的表现,如GPT-4和Codex等。环境支持包括Python、Java、JavaScript在内的18种编程语言,为研究人员提供了广泛的评估选择。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号