Project Icon

Llama-2-7B-32K-Instruct

长上下文对话模型,支持自定义微调和高效推理

Llama-2-7B-32K-Instruct是开源长上下文对话模型,微调自高质量指令和对话数据。适用于长上下文的摘要与问答任务,通过评估与多款顶尖模型对比。在Together API的支持下,用户可自定义微调以提升性能。模型数据与使用方法已完全开放,方便个性化开发。建议安装Flash Attention V2以提高推理效率。

llama3-8b-cpt-sea-lionv2.1-instruct - 细调提升东南亚多语言模型的指令执行与交互表现
GithubHuggingfaceLlama3东南亚多语言开源项目指令微调模型模型评估
Llama3 8B SEA-Lionv2.1 Instruct是一种为东南亚设计的多语言大模型,支持英语、印尼语、泰语、越南语等。与前版本相比,模型在指令执行和交互能力上有显著提升。经过细致的指令调整,模型引入本地化和翻译处理以保证数据适用性与自然性。模型可通过Huggingface访问,需指定Transformers库版本,并注意模型安全性未经特别调校。参与项目改进可通过GitHub。
WizardVicuna2-13b-hf - 细化Llama 2模型以优化对话生成能力
GithubHuggingfaceLlama 2Meta参数规模开源项目文本生成模型训练数据
基于ehartford的wizard_vicuna_70k_unfiltered数据集,对Llama-2-13b-hf模型进行精细化训练三次,专注于对话应用的优化。该项目在开源基准测试中表现优异,并在人类评估中显示出与某些流行闭源模型相当的帮助性和安全性。为确保最佳性能,需按照指定格式使用INST和<<SYS>>标签。此模型由Meta研发,访问需遵循相关商业许可证。
Llama-3-KoEn-8B-Instruct-preview - 基于Chat Vector技术的Llama-3-8B语言模型在多语言生成中的应用
GithubHuggingfaceLlama-3TRC计划pytorch开源项目模型生成模型语言模型
Llama-3-KoEn-8B-Instruct-preview项目是基于TPUv4-256的继续预训练语言模型,结合Chat Vector技术。尽管尚未对韩语指令集进行微调,但为新型聊天和指令模型的开发提供了重要基础。项目中包括详细的示例代码,展示了该模型在文本封装和生成方面的能力,适合需要深入语义生成和自然语言处理的开发者。
Llama-3.2-11B-Vision-Instruct - Meta开发的多模态语言模型 提供图像理解与文本生成
GithubHuggingfaceLlama 3.2-VisionMeta图像识别多模态大语言模型开源项目模型自然语言处理
Llama-3.2-11B-Vision-Instruct是Meta开发的多模态语言模型,可处理图像和文本输入并生成文本输出。该模型在视觉识别、图像推理和描述任务中表现优异,性能超越多个开源和闭源多模态模型。基于Llama 3.1文本模型,采用优化的Transformer架构,通过监督微调和人类反馈强化学习提升性能。模型支持128k上下文长度,在大规模图像-文本对数据上训练,具备多语言处理能力。
Llama-2-70b-hf - Meta开发的70亿参数开源大语言模型 支持多样化自然语言处理任务
GithubHuggingfaceLLAMA 2人工智能大语言模型开源开源项目模型自然语言处理
Llama-2-70b-hf是Meta开发的70亿参数大语言模型,基于优化的Transformer架构,支持4k上下文长度。模型在2万亿token公开数据上预训练,通过监督微调和人类反馈强化学习实现对话能力。在多项基准测试中表现优异,适用于对话、问答、推理等自然语言处理任务。作为开源发布的基础模型,为学术研究和商业应用提供了有力支持。
Llama3.1-70B-Chinese-Chat - 中英双语优化的Llama3.1-70B指令微调模型
GithubHuggingfaceLlama3.1-70B-Chinese-Chat开源项目文本生成模型细致调整角色扮演语言模型
项目基于Meta-Llama-3.1-70B-Instruct模型,优化针对中英用户,支持角色扮演、函数调用和数学能力。模型使用超10万偏好对数据集训练,提供q3_k_m、q4_k_m、q8_0和f16 GGUF版本。使用ORPO算法进行全参数微调,并基于LLaMA-Factory框架。用户需升级transformers库以下载使用BF16模型,亦可使用GGUF模型进行多种方式推理。
Meta-Llama-3.1-8B-Instruct-GGUF - Llama 3.1 8B多语言AI模型 具备128K上下文处理能力
GithubHuggingfaceLlama 3.1Meta多语言大语言模型开源开源项目模型
Meta-Llama-3.1-8B-Instruct-GGUF是Llama 3系列的最新版本,在多语言处理方面性能优异。该模型具有128K上下文窗口,经过15T token训练,包含2500万合成样本。作为开源领域的先进模型,它适用于广泛的AI任务。LM Studio用户可通过'Llama 3'预设轻松应用这一模型。
Llama-2-13b-hf - Meta开源的130亿参数语言模型 适用于多种NLP任务
GithubHuggingfaceLlama 2人工智能元宇宙大语言模型开源项目模型自然语言处理
Llama-2-13b-hf是Meta开发的大规模语言模型,拥有130亿参数。该模型在2万亿tokens的公开数据上预训练,采用优化的Transformer架构。它支持对话、问答、文本生成等多种NLP任务。与Llama 1相比,Llama 2在代码、常识推理、世界知识等基准测试中表现更佳。此模型开源可用于商业和研究,为AI应用开发奠定了基础。
Llama-3.2-1B-Instruct-4bit - 精简高效的多语言文本生成工具
GithubHuggingfaceLlama 3.2Meta可接受使用政策开源项目机器学习模型许可协议
Llama-3.2-1B-Instruct-4bit是从Meta的Llama 3.2-1B-Instruct模型转换为MLX格式的产品,支持包括英语、德语、法语在内的多语言文本生成。引入4bit量化技术以提升运行效率与支持更大输入扩展。提供便捷的Python接口以实现文本生成,适合对话系统和内容创作等应用。遵循Meta的社区许可协议以确保合法使用。
llama-3-2-1b-sft - 超大规模对话数据集的精细调优AI模型
GithubHuggingfacellama-3-2-1b-sft开源项目微调模型训练数据集超参数超大规模语言模型
该项目将NousResearch的Llama-3.2-1B模型进行精细调优,使用HuggingFaceH4/ultrachat_200k数据集以提高对话处理性能。在多GPU分布式训练中,使用Adam优化器和余弦学习率调度策略,该模型在验证集上的损失率降低至1.2759。适用于广泛的自然语言处理应用,特别是在对话生成和交互式AI领域中。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号