Project Icon

Llama-2-7B-32K-Instruct

长上下文对话模型,支持自定义微调和高效推理

Llama-2-7B-32K-Instruct是开源长上下文对话模型,微调自高质量指令和对话数据。适用于长上下文的摘要与问答任务,通过评估与多款顶尖模型对比。在Together API的支持下,用户可自定义微调以提升性能。模型数据与使用方法已完全开放,方便个性化开发。建议安装Flash Attention V2以提高推理效率。

Llama-3.2-3B-Instruct-GGUF - 多语言模型优化文本生成与对话
GithubHuggingfaceLlama 3.2Meta元学习多语言文本生成开源项目模型许可协议
Llama 3.2作为多语言生成模型,通过优化变换器架构,在文本生成和对话中表现出色,适用于商业和研究。支持英语、德语、法语等多种语言,并可通过监督微调和人类反馈提升性能,特别在信息检索和总结任务中表现优异。使用需遵循许可协议。
Llama-3.2-3B-Instruct-uncensored-LoRA_final-Q4_K_M-GGUF - 高效微调的3B参数英文指令型大语言模型
AI开发GithubHuggingfaceLlamaUnsloth开源项目模型模型训练深度学习
Llama-3.2-3B-Instruct-uncensored-LoRA_final-Q4_K_M-GGUF是基于Llama-3.2-3B-Instruct-uncensored模型微调的开源大语言模型。该模型使用Unsloth和Huggingface的TRL库训练,提高了2倍的训练速度。由PurpleAILAB开发,采用Apache 2.0许可证,主要用于英语文本生成任务。这是一个参数量为3B的指令型模型,适合需要快速部署的应用场景。
Llama-3.2-3B-Instruct-uncensored-GGUF - 量化的语言模型版本,促进文本生成与信息获取
GithubHugging FaceHuggingfaceLlama-3.2-3B-Instruct-uncensored内幕交易开源项目文本生成模型量化
Llama-3.2-3B-Instruct-uncensored-GGUF项目是一个未过滤的量化语言模型版本,增强了文本生成的多样性和信息获取效率。通过llama.cpp的量化处理,该模型在保持高效性能的同时输出高质量响应。其特点包括在敏感话题上的信息提供更全面,响应拒绝次数少。支持研究和开发中的多场景应用,用户可以在相关平台上进行交互,实现从文本生成到信息提取的多领域应用。
Llama-2-70B-Chat-GPTQ - 多量化参数优化的对话生成模型
GithubHuggingfaceLlama 2对话优化对话模型开源项目模型生成文本模型量化
Llama-2-Chat是Meta Llama 2的预训练和微调文本生成模型,专为对话场景优化。在基准测试中表现优异,可与一些知名闭源模型相媲美。GPTQ版本提供多种量化参数,适配不同硬件配置,实现VRAM利用率最大化和优质推理。支持灵活下载分支供用户选择最佳量化配置。
Llama-2-70b-chat-hf - Meta开发的700亿参数对话型语言模型
GithubHuggingfaceLlama 2Meta人工智能大语言模型开源项目模型自然语言处理
Llama-2-70b-chat-hf是Meta开发的大型语言模型,拥有700亿参数。该模型经过对话微调,适用于助手式聊天等场景,在多数基准测试中优于开源聊天模型。Llama 2系列采用优化的transformer架构,通过监督微调和人类反馈强化学习提升性能。模型支持英语商业和研究用途,可用于各种自然语言生成任务。
Llama-3.2-3B-Instruct-uncensored-GGUF - 多硬件兼容的Llama-3.2量化模型
ARM推理GithubHuggingfaceLlama-3.2-3B-Instruct-uncensored嵌入权重开源项目数据集模型量化
LLama-3.2-3B-Instruct模型经过imatrix量化处理,确保在多种硬件配置(如ARM架构)下的高效表现。可在LM Studio中运行并支持多种格式选择,以满足不同内存和性能要求。通过huggingface-cli下载特定文件或全集成,方便易用。K-quants和I-quants提供多样化速度与性能的选择,是研究及开发人员的灵活工具。用户反馈能有效提升量化模型的适用性。
Llama3.1-8B-Chinese-Chat - Llama3.1-8B中英双语指令微调模型
GithubHuggingfaceLlama3.1ORPO中文聊天模型开源项目机器学习模型自然语言处理
Llama3.1-8B-Chinese-Chat是一个针对中英用户优化的大型语言模型,基于Meta-Llama-3.1-8B-Instruct开发。该模型经过ORPO算法微调,具备角色扮演和工具使用等多项功能。它支持128K上下文长度,提供BF16和多种GGUF版本,可通过Python或LM Studio使用。模型开源供研究使用,使用时请注明引用。
Llama-2-7b-chat-hf-q4f32_1-MLC - 基于Llama-2的MLC格式聊天模型
API开发GithubHuggingfaceLlama-2MLC开源项目模型模型部署聊天机器人
这是一个基于Llama-2-7b-chat-hf的MLC格式q4f32_1模型,支持MLC-LLM和WebLLM项目。模型提供命令行聊天、REST服务器和Python API三种调用方式,可用于开发聊天应用及系统集成。
Llama-3.2-90B-Vision-Instruct - Meta开发的多模态大语言模型实现图像理解与视觉推理
GithubHuggingfaceLlama 3.2-VisionMeta图像识别多模态大语言模型开源项目模型自然语言处理
Llama-3.2-90B-Vision-Instruct是Meta开发的多模态大语言模型,用于图像理解和视觉推理。该模型基于Llama 3.1构建,集成视觉适配器,支持图像和文本输入。在视觉识别、图像推理、描述和问答方面表现优异,超越多数多模态模型。模型具有128K上下文长度,采用60亿(图像,文本)对训练,知识覆盖至2023年12月。
Llama-3.1-Nemotron-70B-Instruct-HF - NVIDIA定制Llama 3.1模型提升AI回答质量
GithubHuggingfaceLlama-3.1-Nemotron-70B-InstructNVIDIA人工智能大型语言模型开源项目模型自然语言处理
Llama-3.1-Nemotron-70B-Instruct-HF是NVIDIA基于Llama 3.1定制的大语言模型,旨在提高AI回答的实用性。该模型在Arena Hard、AlpacaEval 2 LC和MT-Bench等自动评估基准上表现优异,超越了GPT-4和Claude 3.5等主流模型。通过RLHF技术训练,该模型能够准确回答问题并提供有价值的回应。开发者可以使用Hugging Face Transformers库部署该模型,但需要至少2个80GB GPU支持。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号