Project Icon

InRanker-base

增强跨领域场景信息检索的AI解决方案

InRanker通过语言模型和重排序技术,在无需额外查询或人工标注的情况下提升跨领域信息检索能力。其双重蒸馏训练策略有效生成训练数据,从而优化了模型性能,并保持易用特性。

ms-marco-MiniLM-L-12-v2 - 跨编码器模型实现高效信息检索与段落排序
Cross-EncoderGithubHuggingfaceMS MarcoSentenceTransformers信息检索开源项目模型自然语言处理
ms-marco-MiniLM-L-12-v2是为MS Marco段落排序任务开发的跨编码器模型。该模型在信息检索领域表现优异,能够高效编码和排序查询与段落。在TREC Deep Learning 2019和MS Marco Passage Reranking数据集上,模型分别达到74.31的NDCG@10和39.02的MRR@10。每秒处理960个文档的速度使其在准确性和效率间实现了良好平衡,适用于各类信息检索应用场景。
Chinese-CLIP - 中文多模态嵌入和检索性能优化的领先方案
Chinese-CLIPGithub图文特征提取开源项目模型下载跨模态检索零样本图像分类
Chinese-CLIP项目,基于大规模中文图文对数据,专门针对中文领域的特点进行优化,提供高效的图文特征计算与相似度测算,实现零样本分类和跨模态检索。该项目改进了多个模型,包括ViT与ResNet结构,并在多个公开数据集上展示了显著的性能提升,为中文处理场景下的企业和研究者提供强大工具。
ms-marco-MiniLM-L-6-v2 - 高性能跨编码器模型用于信息检索和文本排序
Cross-EncoderGithubHuggingfaceMS Marco信息检索开源项目模型模型性能自然语言处理
ms-marco-MiniLM-L-6-v2是一款针对MS Marco段落排序任务开发的跨编码器模型。该模型在信息检索领域表现卓越,能够高效编码和排序查询与文本段落。在TREC Deep Learning 2019和MS Marco Passage Reranking数据集评测中,模型展现出优异性能,NDCG@10和MRR@10分别达到74.30和39.01。ms-marco-MiniLM-L-6-v2兼顾效率与准确性,每秒可处理1800个文档,为信息检索应用提供了实用解决方案。
msmarco-MiniLM-L6-en-de-v1 - MSMARCO跨语言文本重排序模型 支持英德双向检索
GithubHuggingfaceMS MARCO信息检索开源项目性能评估搜索排序模型跨语言模型
这是一个基于MS MARCO数据集训练的跨语言文本重排序模型,支持英语和德语文本的相关性排序。模型可处理英语-英语、德语-英语和德语-德语的文本匹配任务。在TREC-DL19和GermanDPR基准测试中表现出色,处理速度可达每秒1600个文档对。兼容SentenceTransformers和Transformers框架,为跨语言信息检索应用提供了高效方案。
ms-marco-MiniLM-L-2-v2 - 基于MS Marco训练的跨编码器模型实现高效文本排序
Cross-EncoderGithubHuggingfaceMS Marco信息检索开源项目模型模型性能自然语言处理
这是一个基于MS Marco Passage Ranking任务训练的跨编码器模型。主要用于信息检索领域,通过对查询和候选段落编码实现文本排序。模型在TREC Deep Learning 2019和MS Marco Passage Reranking数据集上展现出优秀性能,NDCG@10和MRR@10指标表现突出。支持Transformers和SentenceTransformers两种调用方式,适用于多种应用场景。
dragon-plus-context-encoder - 基于BERT的密集检索器实现多样化文档检索
BERTDRAGON+GithubHuggingface密集检索开源项目模型模型训练特征提取
dragon-plus-context-encoder是一个基于BERT的密集检索器,由RetroMAE初始化并在MS MARCO语料库上进行了进一步训练。该模型使用非对称双编码器结构,在MARCO Dev和BEIR基准测试中分别达到39.0和47.4的得分。通过HuggingFace Transformers,研究人员可以轻松使用该模型进行查询和上下文编码,实现文本相似度计算和文档检索。此外,项目还提供了基于RoBERTa的变体,为不同需求的用户提供了选择。
Splade_PP_en_v1 - SPLADE++稀疏文档检索模型的工业级优化实现
GithubHuggingfaceSPLADE++关键词扩展开源项目文档检索检索效率模型稀疏表示
基于SPLADE++的文档检索模型优化实现,通过FLOPS和令牌预算的调整实现高效检索。模型以bert-base-uncased为基础,在47.27ms的检索延迟下达到37.22的MRR@10性能,适合工业级搜索应用部署。
bge-reranker-base - 增强Transformers.js与ONNX的兼容性,以助力Web模型快速部署
GithubHuggingfaceONNXTransformers.jsWebMLbase_model开源项目模型模型转换
此项目通过兼容ONNX权重与Transformers.js,支持WebML技术发展。用户可将模型转换为ONNX格式,以满足网页应用需求。本页面提供指南,协助开发者将模型转为ONNX并在Web环境中应用。更多详情可参考🤗 Optimum项目,获取详细优化支持与结构建议。
LLM4IR-Survey - 大语言模型在信息检索领域的应用研究综述
GithubLLM信息检索开源项目查询重写检索器重排序
LLM4IR-Survey项目汇集了大语言模型在信息检索领域应用的相关研究论文。项目涵盖查询重写、检索、重排序、阅读理解和搜索代理等方向,全面展示大语言模型在信息检索各环节的应用。 该资源持续更新,反映最新研究进展和创新应用,为该领域的研究人员和从业者提供重要参考。
splade-cocondenser-ensembledistil - SPLADE模型优化段落检索的稀疏神经信息检索
GithubHuggingfaceSPLADE信息检索开源项目文本检索模型深度学习稀疏神经网络
SPLADE CoCondenser EnsembleDistil是一种先进的段落检索模型,在MS MARCO开发集上展现出卓越性能,MRR@10达38.3,R@1000达98.3。该模型整合了查询扩展、文档扩展和词袋等技术,并通过知识蒸馏和硬负样本采样提升了稀疏神经信息检索模型的效果。研究人员可将其应用于相关信息检索任务,更多技术细节可参考相关论文。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号