Project Icon

Llama-3.2-3B-Instruct-GGUF

Meta Llama-3.2-3B模型的GGUF文件和高效微调工具

本项目提供Meta Llama-3.2-3B语言模型的GGUF格式文件,支持2至16位量化。集成的Unsloth工具可大幅提升Llama 3.2、Gemma 2和Mistral等模型的微调效率,速度提升2-5倍,内存减少70%。项目支持在Google Colab上使用Tesla T4 GPU免费微调模型,并可将结果导出为GGUF、vLLM格式或上传至Hugging Face平台。

Meta-Llama-3.1-8B-Instruct-bnb-4bit - 高效快速的开源大语言模型微调框架
GithubHuggingfaceLlama 3.1人工智能大语言模型开源项目模型模型微调自然语言处理
Meta-Llama-3.1-8B-Instruct是一款开源的大语言模型微调框架,能以2.4倍的速度和58%更少的内存微调Llama 3.1等模型。支持Llama 3.1、Gemma 2和Mistral等多种模型,提供Google Colab笔记本便于使用。该框架适用于商业和研究领域,支持多语言处理,具有128K上下文长度。其优化设计显著提升了模型微调效率,为开发者和研究人员提供了强大的工具。
Llama-3.2-3B-Instruct-Q4_K_M-GGUF - Llama 3.2模型的安装与使用详解
GithubHuggingfaceLlamaMeta使用政策开源项目模型模型转换许可协议
Llama-3.2-3B-Instruct Q4_K_M-GGUF模型经过llama.cpp转换为GGUF格式,支持多语言生成,适合用于AI研究与开发。用户可以通过简单的安装步骤在Mac和Linux系统上部署该模型,并通过命令行界面或服务器进行推断。此模型具备高效的文本生成能力,是进行AI开发和优化的有效工具。
Phind-CodeLlama-34B-v2-GGUF - 利用GGUF格式提升模型性能,兼容多平台GPU加速
CodeLlamaGPU加速GithubHuggingface开源项目文本生成格式转换模型模型量化
Phind's CodeLlama 34B v2采用GGUF格式,由llama.cpp团队在2023年8月21日推出替代GGML。GGUF实现了更优的标记化及特殊标记支持,并且具有可扩展性。兼容多种第三方界面与库(如text-generation-webui和KoboldCpp),并支持GPU加速。量化模型在保持高质量的同时降低了资源占用,适用多种场景,建议使用Q4_K_M与Q5_K_M模型以实现最佳性能及质量平衡。
llama-3-8b-Instruct-bnb-4bit - Unsloth加速的Llama 3微调方案
GithubHuggingfaceLlama 3Meta人工智能大语言模型开源项目模型深度学习
llama-3-8b-Instruct-bnb-4bit项目利用Unsloth技术提供高效的Llama 3模型微调方案。该方案可将Llama 3 8B模型的微调速度提升2.4倍,同时减少58%内存使用。项目提供简单易用的notebooks,支持将微调模型导出为GGUF、vLLM格式或上传至Hugging Face。这为开发者提供了一种快速、节省资源的大语言模型定制方法。
Llama-3.2-3B-Instruct-uncensored-i1-GGUF - 多种量化选项助力模型性能与效率优化
GithubHugging FaceHuggingfaceLlama-3.2-3B-Instruct-uncensored使用指南开源项目机器学习模型模型量化
项目提供多种量化选项,包括i1-IQ1_S到i1-Q6_K不同规格的GGUF文件,满足研究和开发中的多样化需求。用户可参考TheBloke的指南了解使用方法,实现实际应用中的性能和效率优化,同时保持模型输出质量与资源利用的平衡。
CodeLlama-7B-GGUF - 采用GGUF格式的CodeLlama 7B模型提高编码效率与多平台兼容性
CodeLlamaGithubHuggingfaceLLMMeta代码生成开源项目模型模型量化
该项目展示了Meta的CodeLlama 7B模型在GGUF格式中的优势,取代不再支持的GGML格式。GGUF提供了更好的标记和特别符号支持,并具有元数据和扩展性。适用于多种第三方客户端和库,如llama.cpp和text-generation-webui。量化模型可满足不同计算需求,实现CPU+GPU推理的最佳性能,适配多种平台,为高性能编码需求提供多样化解决方案。
llama-30b-supercot-GGUF - Llama 30B Supercot GGUF:多种量化格式与GPU加速
GPU加速GithubHuggingfaceLlama 30B Supercot开源项目新格式模型模型文件量化
GGUF格式的Llama 30B Supercot模型支持GPU加速,具备多个量化选项。由ausboss创建,提供多种格式适应不同需求,推荐Q4_K_M格式以实现性能与质量的平衡。GGUF是GGML的替代格式,兼容多种用户界面和库,如llama.cpp、text-generation-webui,适合于机器学习和AI领域应用。
gemma-2-9b-bnb-4bit - 开源工具加速大型语言模型微调并降低内存占用
ColabGithubHuggingfaceUnsloth大语言模型开源项目微调性能优化模型
这是一个用于优化大型语言模型微调过程的开源项目。它兼容Gemma、Llama 3和Mistral等多种主流模型,可以将微调速度提高2-5倍,同时将内存使用量减少70%。项目提供了面向初学者的Colab笔记本,使用者只需添加数据集并运行即可完成高效微调。此外,该工具还支持将模型导出为GGUF格式或直接上传至Hugging Face平台。
Llama-3.2-1B-bnb-4bit - Llama-3.2-1B模型训练加速与内存优化工具
GithubHuggingfaceLlama 3.2Unslothtransformers大语言模型开源项目微调模型
Unsloth是一个开源项目,旨在优化Llama-3.2-1B等多种语言模型的训练过程。该工具可将Llama-3.2-1B模型的训练速度提升2.4倍,同时减少58%的内存使用。项目提供免费的Google Colab notebook,支持Llama-3.2、Gemma 2和Mistral等模型,便于初学者进行模型微调。Unsloth通过提高训练效率和降低资源消耗,为AI模型开发提供了实用的优化方案。
Llama-3.2-3B - 利用优化技术实现提速和内存节省的开源语言模型项目
GithubHuggingfaceLlama 3.2多语言处理大语言模型开源项目模型模型微调算力优化
这是一个基于Unsloth技术的大型语言模型优化项目。支持8种官方语言,采用改进的transformer架构和GQA技术。训练速度提升2.4倍,内存使用减少58%。提供Google Colab环境,支持对话、文本补全等场景的模型微调,适合各级用户。该项目基于Meta的原始模型,遵循社区许可协议。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号