Project Icon

Llama-3.2-3B-Instruct-GGUF

Meta Llama-3.2-3B模型的GGUF文件和高效微调工具

本项目提供Meta Llama-3.2-3B语言模型的GGUF格式文件,支持2至16位量化。集成的Unsloth工具可大幅提升Llama 3.2、Gemma 2和Mistral等模型的微调效率,速度提升2-5倍,内存减少70%。项目支持在Google Colab上使用Tesla T4 GPU免费微调模型,并可将结果导出为GGUF、vLLM格式或上传至Hugging Face平台。

Llama-3-8B-Instruct-v0.9-GGUF - 高效量化Llama-3-8B-Instruct模型支持多种位宽
GGUFGithubHuggingfaceLlama-3人工智能开源项目文本生成模型量化模型
Llama-3-8B-Instruct-v0.9模型的GGUF格式量化版本提供2-bit至8-bit多种位宽选择。GGUF作为llama.cpp团队推出的新格式取代了GGML。该模型兼容多种GGUF支持的客户端和库,如llama.cpp和LM Studio,支持GPU加速,适合本地部署文本生成任务。
Llama-3.2-3B-Instruct-GGUF - Llama-3.2-3B-Instruct模型的多种量化优化版本
GGUFGithubHuggingfaceLlama-3.2-3B大语言模型开源项目提示词格式模型量化
该项目提供Llama-3.2-3B-Instruct模型的11种量化版本,采用llama.cpp优化。量化精度从F16到Q4_K_S不等,文件大小介于6.43GB至1.93GB之间。Q6_K、Q5_K和Q4_K系列在性能与模型大小间取得平衡,适用多种场景。这些版本在保持模型质量的同时,有效减小文件体积并提升运行效率。
Meta-Llama-3-8B-GGUF - Meta Llama 3 8B模型的GGUF量化版本 支持8K上下文长度
GithubHuggingfaceLlama 3Meta人工智能大语言模型开源项目模型自然语言处理
Meta-Llama-3-8B-GGUF是Meta发布的Llama 3系列8B参数大语言模型的量化版本。模型针对对话场景优化,采用改进的Transformer架构,支持8K上下文长度,并使用GQA技术提升推理性能。通过监督微调和人类反馈强化学习,增强了安全性和实用性。该模型于2024年4月发布,基于公开数据训练,知识截止到2023年3月。
MiniCPM-Llama3-V-2_5-gguf - GGUF格式大语言模型轻量化推理工具
GithubHuggingfaceMiniCPMllama.cppollama人工智能开源项目模型模型部署
MiniCPM-Llama3-V 2.5 GGUF是一个针对大语言模型轻量化部署的优化模型文件。通过llama.cpp和ollama框架,开发者可实现模型的本地化推理。项目提供完整的部署文档,支持高效且便捷的本地化实现
llama3-8B-DarkIdol-2.2-Uncensored-1048K-GGUF - 多语言支持的llama3-8B GGUF量化模型,提供多级压缩优化
GGUFGithubHuggingfacellama3大语言模型开源项目权重压缩模型量化模型
llama3-8B GGUF量化模型支持英语、日语和中文,提供3.3GB至16.2GB多种压缩版本,适应不同硬件需求。Q4_K系列在性能和质量上表现均衡。模型基于transformers库开发,适用于角色扮演和偶像相关场景。用户可通过Hugging Face平台获取各版本及其性能对比信息。
Llama-3.2-3B-Instruct-uncensored-LoRA_final-Q4_K_M-GGUF - 高效微调的3B参数英文指令型大语言模型
AI开发GithubHuggingfaceLlamaUnsloth开源项目模型模型训练深度学习
Llama-3.2-3B-Instruct-uncensored-LoRA_final-Q4_K_M-GGUF是基于Llama-3.2-3B-Instruct-uncensored模型微调的开源大语言模型。该模型使用Unsloth和Huggingface的TRL库训练,提高了2倍的训练速度。由PurpleAILAB开发,采用Apache 2.0许可证,主要用于英语文本生成任务。这是一个参数量为3B的指令型模型,适合需要快速部署的应用场景。
llama-2-7b-bnb-4bit - 提升Llama模型性能,实现速度翻倍与内存节省
GithubHuggingfaceLlamaUnsloth内存优化参数调优开源项目模型模型量化
项目通过4bit量化模型和Unsloth技术,优化Llama系列模型的性能。用户可在Google Colab上进行简单操作,免费获取如Gemma、Mistral、TinyLlama等模型,并实现性能提升和内存节省。以Llama 2为例,其推理速度可提高2.2倍,内存使用减少43%。项目适合初学者,支持导出为GGUF和vLLM格式,可上传至Hugging Face。
Llama-2-70B-Chat-GGUF - 支持文本生成与特殊符号的先进开源模型
GithubHuggingfaceLlama 2兼容性开源项目文本生成模型模型文件量化方法
Llama 2 70B Chat项目采用全新GGUF格式,取代已弃用的GGML格式,提升标记化与特殊符号支持功能。此项目由Meta Llama 2开发,兼容多种UI与库,支持多平台GPU加速应用,在文本生成与性能方面提供明显改善。GGUF格式还具备元数据支持,具备更强的扩展性,适用于复杂多变的应用场景。
Llama-3.2-11B-Vision-Instruct-bnb-4bit - Llama 3.2视觉语言模型的4bit优化版实现快速低资源微调
GithubHuggingfaceLlama 3.2Meta大语言模型开源项目模型模型微调深度学习
Llama 3.2系列模型的4bit优化版专注多语言对话和视觉语言处理。Unsloth优化提升训练速度2.4倍,节省58%内存。支持8种官方语言,适用对话生成、检索和总结任务。采用优化Transformer架构,通过SFT和RLHF实现人类偏好对齐,保证高效性能和安全性。该版本为开源社区提供了更易于部署和微调的Llama 3.2模型选择。
Meta-Llama-3.1-70B-Instruct-GGUF - LLaMA 3.1模型量化版本集合及性能参数对比
GithubHuggingfaceLlama 3.1人工智能大语言模型开源项目机器学习模型模型量化
Meta-Llama-3.1-70B-Instruct模型量化版本集合采用llama.cpp的imatrix压缩方式,包含从Q8_0到IQ3_M共13种量化等级选择。模型文件大小范围为74.98GB至31.94GB,适配LM Studio运行环境。Q6_K、Q5_K系列及IQ4_XS等中等压缩比版本在性能与资源占用方面达到较好平衡。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号