CosyVoice
👉🏻 CosyVoice 演示 👈🏻
[CosyVoice 论文][CosyVoice 工作室][CosyVoice 代码]
关于 SenseVoice
,请访问 SenseVoice 仓库 和 SenseVoice 空间。
安装
克隆并安装
- 克隆仓库
git clone --recursive https://github.com/v3ucn/CosyVoice_For_Windows.git
# 如果由于网络问题克隆子模块失败,请重复运行以下命令直到成功
cd CosyVoice_For_Windows
git submodule update --init --recursive
- 安装 Conda:请参见 https://docs.conda.io/en/latest/miniconda.html
- 创建 Conda 环境:
conda create -n cosyvoice python=3.11
conda activate cosyvoice
pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/ --trusted-host=mirrors.aliyun.com
从 https://github.com/S95Sedan/Deepspeed-Windows/releases/tag/v14.0%2Bpy311 安装 deepspeed
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121
# 如果你使用 Windows
无需安装 sox
模型下载
我们强烈建议您下载我们预训练的 CosyVoice-300M
、CosyVoice-300M-SFT
、CosyVoice-300M-Instruct
模型和 speech_kantts_ttsfrd
资源。
如果您是该领域的专家,只对从头开始训练自己的 CosyVoice 模型感兴趣,可以跳过这一步。
# SDK模型下载
from modelscope import snapshot_download
snapshot_download('iic/CosyVoice-300M', local_dir='pretrained_models/CosyVoice-300M')
snapshot_download('iic/CosyVoice-300M-SFT', local_dir='pretrained_models/CosyVoice-300M-SFT')
snapshot_download('iic/CosyVoice-300M-Instruct', local_dir='pretrained_models/CosyVoice-300M-Instruct')
snapshot_download('speech_tts/speech_kantts_ttsfrd', local_dir='pretrained_models/speech_kantts_ttsfrd')
# git模型下载,请确保已安装git lfs
mkdir -p pretrained_models
git clone https://www.modelscope.cn/iic/CosyVoice-300M.git pretrained_models/CosyVoice-300M
git clone https://www.modelscope.cn/iic/CosyVoice-300M-SFT.git pretrained_models/CosyVoice-300M-SFT
git clone https://www.modelscope.cn/iic/CosyVoice-300M-Instruct.git pretrained_models/CosyVoice-300M-Instruct
git clone https://www.modelscope.cn/speech_tts/speech_kantts_ttsfrd.git pretrained_models/speech_kantts_ttsfrd
基本用法
对于零样本/跨语言推理,请使用 CosyVoice-300M
模型。
对于 SFT 推理,请使用 CosyVoice-300M-SFT
模型。
对于指令推理,请使用 CosyVoice-300M-Instruct
模型。
首先,将 third_party/AcademiCodec
和 third_party/Matcha-TTS
添加到您的 PYTHONPATH
。
set PYTHONPATH=third_party/AcademiCodec;third_party/Matcha-TTS
from cosyvoice.cli.cosyvoice import CosyVoice
from cosyvoice.utils.file_utils import load_wav
import torchaudio
cosyvoice = CosyVoice('speech_tts/CosyVoice-300M-SFT')
# sft 用法
print(cosyvoice.list_avaliable_spks())
output = cosyvoice.inference_sft('你好,我是通义生成式语音大模型,请问有什么可以帮您的吗?', '中文女')
torchaudio.save('sft.wav', output['tts_speech'], 22050)
cosyvoice = CosyVoice('speech_tts/CosyVoice-300M')
零样本使用
prompt_speech_16k = load_wav('zero_shot_prompt.wav', 16000) output = cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', prompt_speech_16k) torchaudio.save('zero_shot.wav', output['tts_speech'], 22050)
跨语言使用
prompt_speech_16k = load_wav('cross_lingual_prompt.wav', 16000) output = cosyvoice.inference_cross_lingual('<|en|>And then later on, fully acquiring that company. So keeping management in line, interest in line with the asset that's coming into the family is a reason why sometimes we don't buy the whole thing.', prompt_speech_16k) torchaudio.save('cross_lingual.wav', output['tts_speech'], 22050)
cosyvoice = CosyVoice('speech_tts/CosyVoice-300M-Instruct')
指令使用
output = cosyvoice.inference_instruct('在面对挑战时,他展现了非凡的勇气与智慧。', '中文男', 'Theo 'Crimson', is a fiery, passionate rebel leader. Fights with fervor for justice, but struggles with impulsiveness.') torchaudio.save('instruct.wav', output['tts_speech'], 22050)
启动网页演示
你可以使用我们的网页演示页面快速熟悉CosyVoice。 我们在网页演示中支持sft/零样本/跨语言/指令推理。
请查看演示网站了解详情。
python3 webui.py --port 9886 --model_dir ./pretrained_models/CosyVoice-300M
高级用法
对于高级用户,我们在examples/libritts/cosyvoice/run.sh中提供了训练和推理脚本。 你可以按照这个配方熟悉CosyVoice。
部署构建
可选地,如果你想使用grpc进行服务部署, 你可以运行以下步骤。否则,你可以直接忽略这一步。
cd runtime/python docker build -t cosyvoice:v1.0 .
如果你想使用指令推理,请将speech_tts/CosyVoice-300M改为speech_tts/CosyVoice-300M-Instruct
docker run -d --runtime=nvidia -p 50000:50000 cosyvoice:v1.0 /bin/bash -c "cd /opt/CosyVoice/CosyVoice/runtime/python && python3 server.py --port 50000 --max_conc 4 --model_dir speech_tts/CosyVoice-300M && sleep infinity" python3 client.py --port 50000 --mode <sft|zero_shot|cross_lingual|instruct>
讨论与交流
你可以直接在GitHub Issues上讨论。
你也可以扫描二维码加入我们的官方钉钉聊天群。
致谢
- 我们借鉴了很多FunASR的代码。
- 我们借鉴了很多FunCodec的代码。
- 我们借鉴了很多Matcha-TTS的代码。
- 我们借鉴了很多AcademiCodec的代码。
- 我们借鉴了很多WeNet的代码。
免责声明
以上提供的内容仅供学术用途,旨在展示技术能力。部分示例来源于互联网。如有任何内容侵犯了您的权利,请联系我们要求删除。