Project Icon

distilbart-mnli-12-1

压缩版BART模型用于自然语言推理

distilbart-mnli-12-1是一个用于自然语言推理的压缩版BART模型。该模型采用No Teacher Distillation技术,通过复制bart-large-mnli的交替层并微调,在保持较高准确率的同时大幅减小模型规模。项目提供多个压缩版本,可根据需求选择。此外,项目还提供了详细的自行训练步骤。

llm_distillation_playbook - 大语言模型蒸馏技巧与实践指南
GPT-4GithubLLM开源开源项目模型蒸馏评估标准
LLM Distillation Playbook项目提供了系统化的大语言模型蒸馏实践指南。该项目探讨了模型蒸馏的关键概念、评估标准和实用技巧,涵盖数据准备到模型部署的全流程。它为工程师和ML实践者提供见解,帮助在生产环境中将大型语言模型压缩为高效小型版本。该指南融合学术研究和实践经验,是开源LLM开发的参考资源。
distill-sd - 更小更快速的Stable Diffusion模型,依靠知识蒸馏实现高质量图像生成
GithubStable Diffusion开源项目模型压缩神经网络训练细节预训练检查点
基于知识蒸馏技术开发的小型高速Stable Diffusion模型。这些模型保留了完整版本的图像质量,同时大幅减小了体积和提升了速度。文档详细介绍了数据下载脚本、U-net训练方法和模型参数设置,还支持LoRA训练及从检查点恢复。提供清晰的使用指南和预训练模型,适配快速高效图像生成需求。
BitNet-Transformers - 缩放1-bit大语言模型,提高GPU内存利用率
BitNet-TransformersGithubHuggingfaceLLama(2)Wikitext-103pytorch开源项目
BitNet-Transformers项目使用Llama (2)架构,并通过1-bit权重缩放技术,实现对大型语言模型的高效训练和推理。该项目基于Huggingface Transformers,显著降低了GPU内存占用,从原始LLAMA的250MB减少到BitNet模型的最低要求。用户可通过wandb实时追踪训练进度,并在Wikitext-103上进行训练。项目提供了详细的开发环境配置和训练步骤指南,为研究者和开发者提供有力支持。
LLM-Shearing - 使用结构化剪枝加速大语言模型的预训练
GithubLLaMA开源项目教程模型转化结构化剪枝语言模型
本项目通过结构化剪枝显著提升大语言模型的预训练效率。通过剪枝优化LLaMA等大型基础模型,得到更小但同样强大的语言模型。实验结果显示,与从头开始预训练相比,剪枝显著降低了计算成本。项目提供详尽的代码库、评估脚本和剪枝日志,及多种经过指令微调的模型。
MINI_LLM - 完整中文大语言模型训练流程实践
DPOGithubMini-llm大模型开源项目微调预训练
MINI_LLM项目展示了完整的中文大语言模型训练流程,涵盖预训练、SFT指令微调和DPO优化阶段。该项目基于QWEN模型,利用多种数据集训练出1.4B参数规模的模型。项目详细介绍了数据处理方法、提供训练脚本,并包含多GPU训练指南,为中文大语言模型开发提供了实用参考。
nano-llama31 - 轻量级Llama 3.1架构实现 提供训练微调和推理功能
AI模型GithubLlama 3.1nanoGPT开源项目微调深度学习
nano-llama31是一个轻量级的Llama 3.1架构实现,无需额外依赖。该项目聚焦8B基础模型,提供训练、微调和推理功能。相比Meta官方和Hugging Face的版本,代码更为精简。目前正在开发中,已支持Tiny Stories数据集的微调。未来计划增加混合精度训练、分布式数据并行等功能,并考虑扩展到更大规模的Llama 3模型。
SmallLanguageModel-project - 自主构建完整的语言模型,从数据采集到训练一步到位
GithubPythonSmallLanguageModel依赖安装开源项目数据处理模型训练
该项目提供全面的构建语言模型指南,包括数据收集、预处理及模型训练。项目涵盖从数据采集到训练多种模型(如BERT、GPT、Seq-2-Seq)的全部必要工具和步骤。适用于Python 3.8及以上版本,通过详细的教程和文档帮助开发者高效实现模型训练与应用。
airllm - 在单个4GB GPU上运行70B大模型,无需量化和蒸馏
AirLLMGithubLlama3.1大语言模型开源项目推理优化模型压缩
AirLLM优化了推理内存使用,使70B大模型能在单个4GB GPU上运行,无需量化、蒸馏或剪枝。同时,8GB显存可运行405B的Llama3.1。支持多种模型压缩方式,推理速度可提升至3倍。兼容多种大模型,提供详细配置和案例,支持在MacOS上运行。
AliceMind - 阿里巴巴预训练编码器和解码器模型集合
AliceMindGithub优化技术多模态语言模型大规模预训练模型开源项目模型压缩
此项目涵盖了阿里巴巴机器智能实验室(MinD Lab)开发的多种预训练模型和优化技术。包括首个提升多模态大语言模型mPLUG-Owl2和多模态文档理解模型mPLUG-DocOwl。另有中文视频语言预训练数据集Youku-mPLUG和多模态语言模型mPLUG-Owl的新型训练范式。此外,还包含开放域对话系统ChatPLUG、跨文本、图像和视频的多模态基础模型mPLUG-2等,适用于语言理解、生成、表格理解和跨语言等应用场景。
mint - 从零构建Transformer模型的详细教程和实现
BERTGithubHuggingFaceMinTPyTorchTransformer开源项目
该项目提供了一系列循序渐进的教程,指导从零开始构建常见的Transformer模型,如BERT、GPT、GPT2、BART和T5。教程不仅讲解基本架构的实现,还包括预训练和微调示例,并提供小型PyTorch库以便额外使用。项目依赖HuggingFace的tokenizers库进行子词标记,适用于不同规模数据集的训练需求,还涵盖了多工作节点的分布式训练示例,非常适合希望深入了解Transformer模型原理和应用的学习者。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号