Project Icon

U-2-Net

深度嵌套U结构助力显著对象精准检测

U-2-Net,一项荣获2020年模式识别最佳论文奖的创新技术,通过其深度嵌套U结构显著提升对象检测精准度。此技术广泛适用于图像处理、视频分析、背景移除及人像生成等领域,并提供丰富的开发资源助力应用的快速迭代。

MDT - MDTv2图像合成模型:更快收敛和卓越性能
GithubMasked Diffusion Transformer人工智能图像合成开源项目深度学习计算机视觉
MDTv2是一种先进的深度学习图像合成模型,在ImageNet数据集上实现了1.58的FID分数,创造新的业界标准。该模型采用掩码潜在建模技术,提高了图像语义理解能力,学习速度比先前模型快10倍以上。MDTv2在图像生成质量和训练效率方面都有显著提升,为计算机视觉和人工智能领域带来了新的可能性。
detr-resnet-101 - DETR目标检测模型:结合ResNet-101与Transformer架构
COCODETRGithubHuggingfaceTransformer开源项目模型物体检测计算机视觉
DETR是一种创新的端到端目标检测模型,结合了Transformer架构和ResNet-101骨干网络。该模型在COCO 2017数据集上训练,能高效检测图像中的多个物体。通过独特的对象查询机制和双向匹配损失函数,DETR在目标检测任务中表现优异,达到43.5%的平均精度。这一方法为计算机视觉领域开辟了新的研究方向。
MIMDet - 掩码图像建模应用于目标检测的开源项目
GithubMIMDet卷积神经网络实例分割开源项目物体检测视觉变换器
MIMDet是一个利用掩码图像建模技术的开源项目,能够提升预训练的Vanilla Vision Transformer在目标检测中的表现。此框架采用混合架构,用随机初始化的卷积体系取代预训练的大核Patchify体系,实现多尺度表示无需上采样。在COCO数据集上的表现亮眼,使用ViT-Base和Mask R-CNN模型时,分别达到51.7的框AP和46.2的掩码AP;使用ViT-L模型时,成绩分别是54.3的框AP和48.2的掩码AP。
ISBNet - 高效准确的3D点云实例分割网络实现先进场景理解
3D点云GithubISBNet实例分割开源项目深度学习计算机视觉
ISBNet是一种创新的3D点云实例分割网络,采用实例感知采样和框感知动态卷积技术。通过多任务学习方法和轴对齐边界框预测,ISBNet在ScanNetV2、S3DIS和STPLS3D等数据集上实现了领先的分割精度,同时保持快速推理速度。该方法有效解决了密集场景中相同语义类别物体的分割问题,为3D场景理解提供了新的解决方案。
UniTR - 多模态变换器网络推动3D感知进展
3D感知BEV分割GithubUniTR多模态转换器开源项目目标检测
UniTR是一种新型统一多模态变换器网络,用于3D感知任务。它通过共享权重处理相机和激光雷达等多传感器数据,实现高效多模态融合。在nuScenes数据集上,UniTR在3D目标检测和BEV地图分割任务中均达到最新水平,且降低推理延迟。该研究为提升自动驾驶系统的感知能力提供了新思路。
Depth-Anything-V2-Large - 单目深度估计新突破:高精度细节与高效性能的完美平衡
Depth Anything V2GithubHuggingface图像处理开源项目模型深度估计神经网络计算机视觉
Depth-Anything-V2-Large是一款基于大规模数据训练的单目深度估计模型。该模型通过595K合成标记图像和62M+真实未标记图像的训练,在细节精度和鲁棒性方面超越了前代版本。与基于SD的模型相比,它不仅更加高效和轻量,处理速度提升了10倍,还在预训练基础上展现出优秀的微调能力。这一模型为计算机视觉领域提供了性能卓越的深度估计解决方案。
yolov9 - 高效准确的目标检测算法
GithubYOLOv9开源项目深度学习目标检测神经网络计算机视觉
YOLOv9是一种新型目标检测算法,采用可编程梯度信息技术提高学习能力。该开源项目提供YOLOv9的官方实现,包含预训练模型、训练评估脚本和使用文档。在COCO数据集上,YOLOv9展现出优异的检测性能,同时保持较低的模型复杂度。研究人员和开发者可利用这一工具进行高效准确的目标检测任务。
SOLO - 无框的实例分割算法,可直接输出实例掩码和类别概率,并具备高质量掩码预测和顶级性能
GithubResNet-101SOLOSOLOv2开源项目目标分割高质量遮罩预测
SOLO项目实现了SOLO和SOLOv2两种完全无框的实例分割算法,可直接输出实例掩码和类别概率,并具备高质量掩码预测和顶级性能。该项目基于mmdetection,支持多GPU和单GPU训练,并提供多种预训练模型下载,包括轻量级模型。对于研究人员来说,这些工具显著提高了分割精度和训练速度,适用于各种应用场景。
Depth-Anything-V2-Base - 更快更精细的单目深度估计模型
Depth-Anything-V2GithubHuggingface图像处理开源项目模型深度估计深度学习计算机视觉
Depth-Anything-V2是一款先进的单目深度估计模型,由595K合成标记图像和62M+真实未标记图像训练而成。它在细节表现、鲁棒性和效率上都超越了V1版本,处理速度比基于SD的模型快10倍。采用ViT-B架构,该模型为计算机视觉领域提供了高效的深度预测工具,尤其适用于需要精确深度信息的应用场景。
GLEE - 实现多任务图像和视频处理的通用视觉基础模型
GLEEGithub多任务模型实例分割开源项目目标检测计算机视觉
GLEE是一个通用对象基础模型,在超过1000万张来自多个数据集的图像上进行联合训练。该模型能同时处理多种以对象为中心的视觉任务,并在多个基准测试中保持领先性能。GLEE具有出色的通用性和零样本迁移能力,可作为增强其他架构或模型的基础组件。这项研究被CVPR2024接受为亮点论文,研究团队计划开源相关代码和预训练模型。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号