Project Icon

RWKV_Pytorch

RWKV大语言模型的纯PyTorch推理框架

RWKV_Pytorch是一个基于纯PyTorch实现的RWKV大语言模型推理框架。该框架支持批量和并行推理,充分发挥RWKV模型性能。其代码结构清晰,便于阅读和二次开发。框架支持ONNX格式模型的导出和推理,提供本地部署选项。未来计划适配香橙派AI Pro开发板,以实现在昇腾生态上推理RWKV模型。当前版本仅兼容RWKV v6模型(x060版本)。

RWKV_Pytorch

这是一个用纯Pytorch原生实现的RWKV大语言模型的推理框架,官方的原生实现过于复杂且无法拓展生态,让我们加入灵活的Pytorch阵营,一起开源起来吧!


特性

  • 原生pytorch实现!
  • 支持batch推理!
  • 支持并行推理!充分发挥RWKV优势!
  • 代码整洁,容易阅读和二次开发!
  • 支持导出并推理onnx格式模型!

使用方法

  1. 克隆仓库 git clone -b dev https://github.com/yuunnn-w/RWKV_Pytorch.git
  2. 执行 cd RWKV_Pytorch 进入仓库目录,执行 pip install -r requirements.txt 安装依赖。
  3. 下载 RWKV6 模型,官方仓库地址:BlinkDL/rwkv-6-world,将模型权重放置在weight文件夹中。
  4. 修改 main.py 文件的 MODEL_NAME 参数。
  5. 执行 python main.py,即可看到batch推理效果。

流水并行(pipeline parallel)使用方法

  1. 克隆仓库 git clone -b pipeline https://github.com/yuunnn-w/RWKV_Pytorch.git
  2. 执行 cd RWKV_Pytorch 进入仓库目录,执行 pip install -r requirements.txt 安装依赖。
  3. 下载 RWKV6 模型,官方仓库地址:BlinkDL/rwkv-6-world,将模型权重放置在weight文件夹中。
  4. 修改 train/params.json 文件的 MODEL_NAME 参数。
  5. 执行 torchrun --nproc-per-node 3 train/train-parallel.py开始训练。

导出onnx方法

  1. 修改 onnx_export.py 文件参数为你想导出的模型。
  2. 执行 python onnx_export.py 即可导出到./onnx路径。
  3. (可选)执行 mkdir ONNX_Simplified 创建一个用于存放简化算子模型的目录。
  4. (可选)执行 python simplify_large_onnx.py -m onnx/{model name}.onnx -o ONNX_Simplified/{model name}.onnx 来简化模型,简化后的模型将存放在ONNX_Simplified目录。
  5. (可选)修改 onnx_infer.py 文件内的模型路径参数,执行 python onnx_infer.py 即可推理onnx格式模型。

本地部署体验

  1. 修改 openai_api.py 文件中的模型配置参数。
  2. 执行 python openai_api.py 即可启动后端。
  3. 用任意符合 OpenAI API 规范的客户端,填入 http://127.0.0.1:8848 作为 API_URL 参数,即可体验。

已知的问题:

  • 已知op17版本才支持LayerNorm算子,op18版本才支持GroupNorm算子,目前torch的preview版本支持op18,但是无法导出,current版本只支持op17,能够正常导出含LayerNorm算子的模型。你可以参照main.py 使用opset参数指定

注意,本框架目前仅支持RWKV v6模型,具体版本号为x060


预计未来基于本项目适配香橙派推出的AI Pro开发板,实现在昇腾的生态上推理国产大语言模型RWKV!!!


另外,经过测试,v6 1.6B导出并优化后的onnx模型含有如下算子:

  • 算子类型:Gather,数量:145
  • 算子类型:Squeeze,数量:121
  • 算子类型:ReduceMean,数量:148
  • 算子类型:Sub,数量:122
  • 算子类型:Mul,数量:484
  • 算子类型:Add,数量:675
  • 算子类型:Sqrt,数量:74
  • 算子类型:Div,数量:74
  • 算子类型:Shape,数量:240
  • 算子类型:Expand,数量:240
  • 算子类型:Range,数量:72
  • 算子类型:Reshape,数量:384
  • 算子类型:Equal,数量:72
  • 算子类型:Where,数量:72
  • 算子类型:Unsqueeze,数量:192
  • 算子类型:Concat,数量:192
  • 算子类型:ScatterND,数量:72
  • 算子类型:MatMul,数量:337
  • 算子类型:Tanh,数量:48
  • 算子类型:Split,数量:24
  • 算子类型:Exp,数量:48
  • 算子类型:Neg,数量:24
  • 算子类型:Sigmoid,数量:48
  • 算子类型:Slice,数量:24
  • 算子类型:Flatten,数量:24
  • 算子类型:Relu,数量:24

优化模型用到的仓库:onnxsim_large_model

贡献者


技术交流群

QQ交流群


感谢各位大佬做出的贡献!欢迎各路大神为本项目提PR和Issue!你们的贡献对本项目十分有价值!!!

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号