#加速推理
Whisper-Finetune - 微调与加速Whisper模型
Whisper微调语音识别加速推理OpenAIGithub开源项目
本项目使用Lora技术微调了OpenAI的Whisper语音识别模型,并支持CTranslate2和GGML加速。模型能够进行无时间戳、有时间戳及无语音数据训练,并支持中文和98种其他语言的语音转文本及翻译。开源了多个适用于不同需求的模型,支持Windows、Android和服务器部署。提供详细的安装教程和使用说明,以及AIShell和WenetSpeech数据的评估和推理速度测试表,方便用户快速上手。
hummingbird - 用于将经过训练的传统 ML 模型编译为张量计算的库
Hummingbird机器学习模型PyTorch神经网络加速推理Github开源项目
Hummingbird通过将训练好的传统机器学习模型编译为张量计算,使其能够借助神经网络框架(如PyTorch)加速。用户可利用神经网络框架的优化和硬件加速,无需重新设计模型。支持多种模型如决策树、随机森林、LightGBM和XGBoost,并提供易于替换的推理API。支持转换为PyTorch、TorchScript、ONNX和TVM格式。
Whisper-Finetune - 语音识别模型的高效微调与加速
Whisper语音识别模型微调加速推理中文识别Github开源项目
Whisper-Finetune项目致力于优化OpenAI的Whisper语音识别模型。该项目采用Lora技术进行微调,支持多种数据类型的训练,并通过CTranslate2和GGML实现加速推理。此外,项目提供了跨平台应用和服务器部署方案,为语音识别应用开发提供了全面支持。
AsyncDiff - 通过异步去噪实现扩散模型并行加速
AsyncDiff扩散模型模型并行异步去噪加速推理Github开源项目
AsyncDiff是一种创新的扩散模型加速方案,通过将模型分割并在多设备上异步并行处理来提高效率。这种方法巧妙利用了扩散步骤间的相似性,将顺序去噪转变为异步过程,有效打破了组件间的依赖关系。AsyncDiff不仅大幅降低了推理时间,还保持了生成质量。目前已支持Stable Diffusion、ControlNet和AnimateDiff等多种主流扩散模型。
相关文章