#深度学习编译器
相关项目
awesome-tensor-compilers
本页面汇集了关于张量计算与深度学习的优质开源编译器项目和研究论文,包括编译器与中间表示(IR)设计、自动调优与自动调度、CPU和GPU优化、NPU优化、图级优化、动态模型、图神经网络、分布式计算、量化方法、稀疏计算、程序改写以及验证与测试等领域的内容。页面还提供相关教程资源,帮助开发者和研究人员优化机器学习和深度学习的编译性能。
hidet
Hidet是一个用Python编写的开源深度学习编译器,主要优化NVIDIA GPU上的推理任务。它能将PyTorch和ONNX模型编译成高效的CUDA内核,通过图级和算子级优化提升性能。Hidet易于集成,支持通过torch.compile优化PyTorch模型,为开发者提供了便捷的深度学习性能优化方案。
exploring-AI-optimization
Exploring AI optimization项目是一个聚焦AI优化技术的资源库,收录了量化、剪枝等领域的高质量论文、教程和课程。该项目每周更新AI优化领域的重要研究见解,为研究人员和开发者提供学习参考,推动AI技术发展。资源库开放社区贡献,鼓励知识交流与分享。