#DQN

dopamine - 用于快速原型设计的强化学习研究框架
Dopamine强化学习JAXDQNTensorflowGithub开源项目
Dopamine是一个用于快速原型设计强化学习算法的研究框架,旨在便于用户进行自由实验。其设计原则包括易于实验、灵活开发、紧凑可靠和结果可重复。支持的算法有DQN、C51、Rainbow、IQN和SAC,主要实现于jax。Dopamine提供了Docker容器及源码安装方法,适用于Atari和Mujoco环境,并推荐使用虚拟环境。更多信息请参阅官方文档。
Deep-reinforcement-learning-with-pytorch - 深度强化学习PyTorch实现与代码示例
Deep Reinforcement LearningpytorchDQNTD3GymGithub开源项目
本项目提供经典和前沿的深度强化学习算法PyTorch实现,包括DQN、DDPG、PPO等。项目持续更新并维护,适用于Anaconda虚拟环境管理。详细的安装步骤和测试方法确保用户能顺利运行代码,文档中还提供了相关论文和代码链接,便于深入学习研究。
cartpole - 强化学习算法DQN在OpenAI Cartpole环境中的应用
Cartpole深度强化学习DQNOpenAIAdam优化器Github开源项目
该项目展示了如何在OpenAI的Cartpole任务中应用DQN(深度Q学习)算法解决问题。通过调整超参数如GAMMA、学习率和记忆大小,目标是防止附有未驱动关节的杆子在无摩擦轨道上的小车倒下,以保持杆子直立并获得高奖励。解决标准是连续100次试验中平均奖励达到195。
DQN-Atari-Agents - 丰富DQN算法库,实现模块化训练与高效并行
DQNDDQNRainbowPythonAtariGithub开源项目
该项目提供了多种DQN算法的模块化训练方法,支持从原始像素或内存数据进行训练,并提高了训练速度。可选版本包括DDQN、Dueling DDQN等,可以通过组合Noisy layer、PER、多步目标等扩展为Rainbow算法。项目详细介绍了各类算法的使用方法及其在Atari和CartPole环境中的性能表现,适合用于研究和项目应用。
DeepRL - PyTorch 中深度强化学习算法的模块化实现
DeepRLPyTorch深度强化学习DQNA2CGithub开源项目
DeepRL项目使用PyTorch实现了一系列流行的深度强化学习算法,提供模块化框架,适用于从简单任务到高难度游戏。支持的算法包括DQN、C51、QR-DQN、A2C、DDPG、PPO等,并具备异步数据生成和传输功能。项目依赖PyTorch v1.5.1,具体依赖请参考Dockerfile和requirements.txt。此外,项目提供代码示例和性能曲线图,适合相关研究参考和使用。
rainbow-is-all-you-need - 从DQN到Rainbow的深度强化学习方法
RainbowDQN强化学习深度学习ColabGithub开源项目
本教程详细介绍了从DQN到Rainbow的深度强化学习方法,包含理论背景和面向对象的实现。每章节都可以在Colab上直接运行,适合快速学习。涵盖DQN、DoubleDQN、优先经验回放、对抗网络、噪声网络、分布式DQN和N步学习等多个主题,欢迎贡献改进建议或代码。
drl-zh - 深度强化学习入门,从零开始实现经典算法
Deep Reinforcement LearningDQNSACPPOAtari游戏Github开源项目
本课程提供深度强化学习的基础和经典算法的实用入门指导。学习者将从零开始编写DQN、SAC、PPO等算法,并掌握相关理论。课程内容还包括训练AI玩Atari游戏及模拟登月任务。同时详细介绍环境设置和代码实现步骤,支持Visual Studio Code和Jupyter Notebook,确保学习过程流畅高效。