#降维
umap - 先进的流形学习和数据降维算法
UMAP降维数据可视化机器学习聚类Github开源项目
UMAP是一种高效的非线性降维和数据可视化算法。它能处理大规模高维数据,支持多种距离度量,可用于监督和半监督学习。UMAP在保持数据全局结构方面表现优异,运行速度快,理论基础扎实。该项目还包含densMAP功能,可在降维同时保留局部密度信息。作为t-SNE的有力替代,UMAP适用于多种机器学习场景。
PaCMAP - 高效保留数据局部和全局结构的降维可视化工具
PaCMAP降维可视化局部结构全局结构Github开源项目
PaCMAP是一种创新的降维算法,专注于高维数据的可视化。通过优化邻居对、中距离对和远距离对三种点对关系,PaCMAP能同时保留数据的局部和全局结构,突破了传统方法仅关注单一结构的局限。该算法已在机器学习权威期刊JMLR发表,并提供Python和R语言接口,适用于多领域的高维数据可视化分析。PaCMAP在MNIST等多个数据集上展现出优秀的性能,为数据科学家提供了强大的可视化工具。
hypertools - 简化高维数据可视化和分析的Python工具包
HyperTools数据可视化降维高维数据Python工具包Github开源项目
HyperTools是一个用于高维数据可视化和分析的Python工具包。它能够将复杂的高维数据集降维,并生成直观的可视化结果。该工具包整合了matplotlib、scikit-learn和seaborn等库,提供数据对齐、聚类和描述等功能。HyperTools主要面向需要分析复杂数据结构的数据科学家和研究人员。
ivis - 基于神经网络的高维数据降维和可视化算法
ivis算法降维机器学习数据可视化神经网络Github开源项目
ivis是一种基于暹罗神经网络的数据降维算法,专门用于处理高维数据集。该算法支持无监督和有监督学习,能够有效保持数据的局部和全局结构。ivis适用于大规模数据集,支持多种数据格式,包括numpy数组、稀疏矩阵和hdf5文件。它在聚类、异常检测等任务中表现出色,为数据分析提供了强大的可视化工具。ivis算法采用基于三元组的神经网络结构,能够高效处理百万级数据点和上千维特征,在保持数据结构方面常常优于t-SNE等传统方法。支持新数据点的转换,可以轻松集成到sklearn管道中,在高维数据可视化、聚类分析和异常检测等领域具有广泛应用前景。
相关文章