#Gemma-2-9B-It-SPPO-Iter3
SPPO - 自我对弈优化提升语言模型对齐效果
SPPOAlpacaEval 2.0Mistral-7B-InstructLlama-3-8B-InstructGemma-2-9B-It-SPPO-Iter3Github开源项目
SPPO采用自我对弈框架和新的学习目标,有效提升大规模语言模型性能。通过理论推导和多数据集实证验证,SPPO无需外部信号即可超越GPT-4等模型。该项目源代码和多个优化模型如Mistral-7B、Llama-3-8B、Gemma-2-9B均已开源,详情可参考相关论文。
Gemma-2-9B-It-SPPO-Iter3 - 通过自我游戏偏好优化增强语言模型 alignment
自我博弈偏好优化Gemma-2-9B-It-SPPO-Iter3语言模型开源项目合成数据集模型GithubHuggingface超参数
Gemma-2-9B-It-SPPO-Iter3以google/gemma-2-9b-it为基础,经过第三次自我游戏偏好优化迭代开发,结合openbmb/UltraFeedback数据集微调。在合成数据集中展现了出色的性能,LC.获胜率达到53.27%,在AlpacaEval排行榜上表现优良。项目主要使用英语,遵循Apache-2.0许可,适用于多种自然语言处理场景。
Gemma-2-9B-It-SPPO-Iter3-GGUF - 探讨Gemma-2-9B模型量化版本的性能与存储选择
数据集量化高性能开源项目模型GithubHuggingfaceGemma-2-9B-It-SPPO-Iter3下载指南
该项目利用llama.cpp进行量化,推出多种Gemma-2-9B-It-SPPO-Iter3模型版本以适应不同的内存及性能需求。用户可按RAM和VRAM状况选择合适的量化格式,如高质量的Q6_K_L或经济型IQ2_M。量化文件大小介于4GB至37GB之间,且可通过Huggingface下载。根据VRAM选择合适模型尺寸,有助于优化运行速度,并提供多样化选项以满足不同性能与存储需求。