#Llama-3-8B-Instruct
SPPO: 自对弈偏好优化方法推动大语言模型对齐新突破
2 个月前
相关项目
SPPO
SPPO采用自我对弈框架和新的学习目标,有效提升大规模语言模型性能。通过理论推导和多数据集实证验证,SPPO无需外部信号即可超越GPT-4等模型。该项目源代码和多个优化模型如Mistral-7B、Llama-3-8B、Gemma-2-9B均已开源,详情可参考相关论文。
Meta-Llama-3-8B-Instruct-abliterated-v3
Meta-Llama-3-8B-Instruct模型采用正交化技术减少拒绝行为,保留原始知识,适用于控制特定行为。
Llama-3-8B-Instruct-v0.8
本页面介绍了Llama-3-8B-Instruct-v0.8模型,该模型是在MaziyarPanahi的Llama-3-8B-Instruct-v0.4基础上开发的,专注于高效的文本生成。它在AI2推理挑战、HellaSwag等多个基准测试中表现出色,是前五名8B模型之一。量化的GGUF变体使其在多种应用场景下性能更高效,详细的评价结果请参考开放LLM排行榜。