#模型并行
llm_training_handbook - 大规模语言模型训练手册
The Large Language Model Training HandbookLLM模型并行吞吐量最大化tensor精度Github开源项目
该手册为语言模型训练工程师和操作员提供了多种方法和实用脚本,涵盖模型并行性、最大化吞吐量、张量精度和数据类型、训练超参数和模型初始化、不稳定性排查、以及软件和硬件故障调试等方面。适合需要深入技术细节的用户。若需要概述性和概念性内容,请参考姊妹项目The Large Language Model Training Playbook。
AsyncDiff - 通过异步去噪实现扩散模型并行加速
AsyncDiff扩散模型模型并行异步去噪加速推理Github开源项目
AsyncDiff是一种创新的扩散模型加速方案,通过将模型分割并在多设备上异步并行处理来提高效率。这种方法巧妙利用了扩散步骤间的相似性,将顺序去噪转变为异步过程,有效打破了组件间的依赖关系。AsyncDiff不仅大幅降低了推理时间,还保持了生成质量。目前已支持Stable Diffusion、ControlNet和AnimateDiff等多种主流扩散模型。