#多目标跟踪

boxmot - BoxMOT:支持分割、目标检测和姿态估计的多对象跟踪模块
BoxMOTYolov8目标检测多目标跟踪姿态估计Github开源项目
BoxMOT项目提供可插拔的多对象跟踪模块,支持分割、目标检测和姿态估计。提供适用于各种硬件配置的跟踪方法,包括CPU和GPU。兼容多种ReID模型及Yolov8、Yolo-NAS、YOLOX等目标检测模型,并通过快速实验脚本提高实验效率。
siam-mot - 区域基的多目标追踪网络
SiamMOT多目标跟踪运动模型深度学习CVPRGithub开源项目
SiamMOT是一种基于区域的连体多目标追踪网络,通过在帧间估算对象实例的运动,实现目标检测和关联。项目展示了显式和隐式运动建模的重要性,显著提升了在MOT17、TAO-person和Caltech Roadside Pedestrians数据集上的性能,且在HiEve数据集上超越了ACM MM'20 HiEve Grand Challenge的获胜者。SiamMOT在单个现代GPU上以每秒17帧的速度运行,支持对人或人和车辆的联合追踪,并提供丰富的预训练模型供用户使用。
StrongSORT - 先进多目标跟踪算法全面升级DeepSORT技术
StrongSORT多目标跟踪DeepSORT目标检测深度学习Github开源项目
StrongSORT是对DeepSORT多目标跟踪算法的全面升级。该项目在检测、嵌入和关联等核心环节进行了优化,并引入AFLink和GSI两个轻量级插件算法。经过改进的StrongSORT在MOT17和MOT20数据集上刷新了HOTA和IDF1指标记录,性能显著优于现有方法。项目开源了完整代码实现和使用说明,便于研究人员复现和拓展。
SparseTrack - 多目标跟踪新方法:基于伪深度的场景分解技术
SparseTrack多目标跟踪场景分解伪深度数据关联Github开源项目
SparseTrack提出了一种新的多目标跟踪方法,通过伪深度估计和深度级联匹配策略来分解密集场景。这种方法在MOT17和MOT20基准测试中表现出色,仅使用IoU匹配就达到了与复杂算法相当的性能。SparseTrack为解决拥挤场景中的多目标跟踪问题提供了新的思路,展示了简单方法在复杂任务中的潜力。
dreamscene4d - 从单目视频生成动态多目标3D场景的突破性技术
DreamScene4D3D场景生成视频处理计算机视觉多目标跟踪Github开源项目
DreamScene4D是一种从单目视频生成动态多目标3D场景的开源技术。它采用3D高斯和形变优化方法,能处理不同长度的视频和多个目标。项目提供自动化和分阶段优化脚本,支持处理有遮挡和无遮挡的视频。DreamScene4D在复杂场景和长视频序列处理方面表现优异,为计算机视觉和图形学研究提供了新思路。
MeMOTR - 基于长期记忆的Transformer多目标跟踪方法
MeMOTR多目标跟踪Transformer长期记忆计算机视觉Github开源项目
MeMOTR提出了一种基于Transformer的端到端多目标跟踪方法,通过长期记忆注入和定制记忆注意力层提升目标关联性能。该方法在DanceTrack和SportsMOT等数据集上展现出优秀的跟踪效果,为复杂场景的多目标跟踪提供了新思路。项目开源了代码、预训练模型和使用说明,便于研究者复现和改进。
Similari - Rust实现的高性能多目标跟踪框架
Similari多目标跟踪Rust框架Python绑定性能优化Github开源项目
Similari是一个Rust实现的多目标跟踪框架,提供Python接口。它支持构建SORT、DeepSORT等复杂跟踪系统,内置卡尔曼滤波、非极大值抑制等算法。Similari适用于对象具有多个动态观测值的跟踪任务,可实现高效并行处理。与基于Python和NumPy的跟踪器相比,Similari通常具有更高的性能。
py-motmetrics - 多目标跟踪性能评估Python库
多目标跟踪性能评估Python库MOT指标数据分析Github开源项目
py-motmetrics是一个评估多目标跟踪(MOT)性能的Python库。它实现了CLEAR-MOT和ID等评估指标,支持多种距离度量,可跟踪每帧事件,并提供灵活的求解器后端。该库兼容MOTChallenge基准,使用pandas进行数据分析,易于扩展。py-motmetrics为研究人员和开发者提供了全面评估和比较多目标跟踪算法性能的工具。