Woodpecker
Woodpecker是一种创新方法,专门用于校正多模态大语言模型中的幻觉现象。与依赖重训练数据的传统方法不同,Woodpecker通过关键概念提取、问题制定、视觉知识验证、视觉声明生成和幻觉校正五个阶段实现训练无关的校正。这种方法适应性广泛,可解释性强,并在POPE基准测试中显著提高模型准确性。用户可以通过在线演示平台体验Woodpecker的功能。更多信息请参考我们的arXiv论文或在线Demo。