#RoBERTa

LoRA入门指南 - 低秩适配大型语言模型的高效微调方法

2 个月前
Cover of LoRA入门指南 - 低秩适配大型语言模型的高效微调方法

大型语言模型微调技术全面指南

3 个月前
Cover of 大型语言模型微调技术全面指南

LoRA: 大型语言模型的低秩适应技术

3 个月前
Cover of LoRA: 大型语言模型的低秩适应技术

Microsoft/TrOCR-识别手写文字的利器,让AI在教育领域更进一步

2024年08月03日
Cover of Microsoft/TrOCR-识别手写文字的利器,让AI在教育领域更进一步
相关项目
Project Cover

awesome-llms-fine-tuning

本页面汇总了微调大语言模型(如GPT、BERT、RoBERTa)的全面资源,适用于特定任务和领域的需求。包含教程、论文、工具、框架和最佳实践,为研究人员、数据科学家和机器学习从业者提供宝贵的指导,提升模型表现,优化工作流程。

Project Cover

SpanMarkerNER

SpanMarker是一个基于Transformer库的命名实体识别框架,支持BERT、RoBERTa和ELECTRA等编码器。框架提供模型加载、保存、超参数优化、日志记录、检查点、回调、混合精度训练和8位推理等功能。用户可以方便地使用预训练模型,并通过免费API进行快速原型开发和部署。

Project Cover

BERTweet

BERTweet是首个专为英语推文预训练的公共语言模型,基于RoBERTa预训练程序,使用850M条推文数据进行训练,包含普通推文和疫情相关推文。BERTweet提供多种预训练模型,能够无缝集成于transformers和fairseq框架,支持情感分析、命名实体识别等自然语言处理任务,为研究和应用提供有力支持。

Project Cover

lilt-roberta-en-base

LiLT-RoBERTa将预训练的RoBERTa模型与轻量级的布局变换器结合,适用于处理多语言的文档图像分类、解析及问答任务,适合在结构化文档理解中应用。用户可在模型库中寻找适合特定任务的微调版本。

Project Cover

KoSimCSE-roberta-multitask

KoSimCSE-roberta-multitask是一款开源的韩语句子嵌入模型,主要用于计算句子间的语义相似度。在语义文本相似性测试中,该模型的平均得分达到85.77。项目提供预训练模型和推理代码,方便用户进行句子嵌入和相似度计算。同时,它还为个人训练模型提供环境支持,适用于各种自然语言处理和语义分析任务。

Project Cover

nli-distilroberta-base-v2

nli-distilroberta-base-v2是一个基于sentence-transformers的句子嵌入模型,将文本映射到768维向量空间。该模型适用于聚类、语义搜索等任务,使用简单且效果出色。它支持通过几行代码生成句子嵌入,为自然语言处理提供了有力工具。

Project Cover

roberta-base-snli

roberta-base-snli是一个经过SNLI数据集训练的自然语言推理模型。模型采用Adam优化器结合余弦学习率调度策略,以16的batch size和2e-05的学习率进行了4轮训练。在评估数据集上,模型达到了0.9004的F1得分。项目基于Transformers 4.21.1框架开发,能够有效完成自然语言推理相关任务。

Project Cover

ChemBERTa-zinc-base-v1

ChemBERTa-zinc-base-v1是一个专注于化学分子结构分析的深度学习模型。通过对大规模分子数据的训练,该模型能够进行分子结构预测,并支持毒性、溶解度、药物相似性等化学特性分析。模型创新地将自然语言处理技术应用于化学领域,为研究人员提供了一个高效的分子结构分析工具。

Project Cover

LoRA

LoRA通过低秩分解矩阵实现大型语言模型的低秩适配,减少了训练参数数量,实现高效的任务切换和存储节省。它在GLUE基准测试中的表现与完全微调相当或更好,同时显著降低了参数需求。LoRA支持RoBERTa、DeBERTa和GPT-2等模型,并已集成到Hugging Face的PEFT库中,提供了便捷的适配解决方案。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号