#RoBERTa

VulBERTa-MLP-Draper - 基于RoBERTa的代码安全漏洞智能检测系统
代码分析开源项目模型GithubHuggingface漏洞检测VulBERTa深度学习RoBERTa
VulBERTa-MLP-Draper是一款专注于代码安全分析的深度学习模型。通过在开源C/C++项目上训练,该模型采用RoBERTa架构和自定义标记化流程,实现了对代码语法和语义的深度理解。在多个标准数据集的评测中,模型以较小的参数规模达到了领先的检测性能。
larger_clap_music - 大规模音乐音频分类及特征提取的模型解决方案
RoBERTaGithub神经网络模型开源项目CLAP音频分类TransformerHuggingface
通过对比语言音频预训练技术,CLAP模型实现高效的音频和文本特征提取和分类,适用于无监督学习环境。模型兼具SWINTransformer和RoBERTa的优点,可用来评估音频与文本间的相似性,且能满足多种音频分类和嵌入需求。
roberta-base - 基于大规模韩语数据集的RoBERTa预训练语言模型
HuggingfaceRoBERTaKLUE模型Github开源项目自然语言处理韩语模型机器学习
RoBERTa-base是KLUE(Korean Language Understanding Evaluation)项目开发的韩语预训练模型,基于BertTokenizer分词器构建,支持transformers库直接调用。作为韩语语言理解评估框架的基础模型,主要应用于韩语自然语言处理任务和相关研究工作。
unbiased-toxic-roberta-onnx - 基于RoBERTa的公平评论审核模型ONNX实现
内容审核RoBERTa有害内容检测模型转换HuggingfaceGithub文本分类开源项目模型
这是一个基于RoBERTa架构的评论审核模型ONNX版本,专注于识别和分类不当言论。模型支持多维度评估,包括攻击性、不当行为、语言暴力等标签分类。通过Optimum库优化,便于系统集成,同时提供完整文档支持和活跃的开发者社区。
MiniCheck-RoBERTa-Large - 基于RoBERTa-Large的高效句子级事实核查模型
RoBERTaGithubLLM-AggreFact模型事实核查开源项目Huggingface模型性能MiniCheck-RoBERTa-Large
MiniCheck-RoBERTa-Large是一款事实核查模型,基于RoBERTa-Large实现句子级别的支持验证。该模型通过微调AlignScore生成的14K合成数据,展示优异性能,超越同类规模的专用工具。用户只需简单的Python代码即可集成此模型,用于文档和句子间的语义关联检测。
chinese_roberta_L-2_H-128 - 使用多模态预训练优化中文自然语言处理
语言模型RoBERTa预训练模型Github开源项目CLUECorpusSmallHuggingface
该项目包括24种中文RoBERTa模型,使用CLUECorpusSmall数据集进行训练,效果超过较大数据集。模型通过UER-py和TencentPretrain预训练,并支持多模态框架,参数超过十亿。模型可在HuggingFace和UER-py Modelzoo中获取。项目提供详细的训练过程和关键细节,便于结果复现,着重提升中文自然语言处理任务中的性能。
sentiment-roberta-large-english-3-classes - 基于RoBERTa的英文情感分析模型,精确分类社交媒体情感
社交媒体情感分析RoBERTa准确率模型Github开源项目Huggingface
该模型使用RoBERTa进行三类情感分类(正面、中性、负面),特别适合社交媒体文本。通过5,304条社交媒体帖子进行微调,达到了86.1%的准确率。可通过transformers库轻松集成,提高文本分类的精准性和效率。
roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli - 基于RoBERTa-Large的多数据集自然语言推理模型
SNLIRoBERTa模型Github开源项目自然语言推理预训练模型MNLIHuggingface
基于RoBERTa-Large架构的自然语言推理模型,通过SNLI、MNLI、FEVER-NLI和ANLI等数据集训练而成。模型用于判断文本间的蕴含关系,输出包括推理(entailment)、中性(neutral)和矛盾(contradiction)三种类别。支持使用Transformers库进行API调用,可进行批量数据处理。
roberta_toxicity_classifier - 高效的毒性评论分类模型
毒性分类GithubF1-scoreJigsaw开源项目RoBERTaAUC-ROC模型Huggingface
该模型专注于毒性评论的分类,使用来自Jigsaw 2018、2019和2020年的数据集训练,包含约200万个英文例子。通过对RoBERTa模型的精细调校,在测试集上表现出色,AUC-ROC达到0.98,F1评分为0.76,是用于识别毒性内容的有效工具。
roberta-base-finetuned-dianping-chinese - 中文RoBERTa模型用于多领域文本情感和主题分类
TencentPretrain文本分类RoBERTa模型Github开源项目UER-py模型微调Huggingface
该项目包含利用UER-py和TencentPretrain微调的中文RoBERTa-Base模型,用于用户评论和新闻数据的情感及主题分类。模型可通过HuggingFace获取,适用于多种文本分类任务,具备高度的分类精准度。
roberta-base-chinese-extractive-qa - 中文提取式问答模型简介与使用指南
RoBERTaHuggingface开源项目模型Github普希金训练数据腾讯云提问回答
该项目提供了一种中文提取式问答的完整方案,通过UER-py和TencentPretrain进行模型微调,支持大规模参数和多模态预训练拓展。模型可通过UER-py或HuggingFace获取,便于快速部署问答管道。训练数据包括cmrc2018、webqa和laisi,旨在提高模型的语义理解能力,并在腾讯云上进行三轮训练以优化性能。项目还提供了详细指导,便于导入和转换模型格式,从而提高问答系统的精准性。