#Tensorflow

deep-learning-for-image-processing - 涵盖使用Pytorch和Tensorflow进行网络结构搭建和训练的介绍深度学习在图像处理中的应用的教程
Github开源项目深度学习图像处理PytorchTensorflow图像分类
本教程介绍深度学习在图像处理中的应用,涵盖使用Pytorch和Tensorflow进行网络结构搭建和训练。课程内容包括图像分类、目标检测、语义分割、实例分割和关键点检测,适合研究生和深度学习爱好者。所有PPT和源码均可下载,助力学习和研究。
seq2seq-couplet - 使用Tensorflow的seq2seq对联生成项目
Github开源项目训练模型Tensorflowseq2seq model对对联Python 3.6
该开源项目利用Tensorflow和seq2seq模型生成对联。用户可以通过[在线演示](https://ai.binwang.me/couplet)体验效果。运行项目需要Tensorflow、Python 3.6及特定数据集。通过配置couplet.py文件并运行可进行模型训练,训练过程中可在Tensorboard查看损失和BLEU评分。训练完成后,可运行server.py启动Web服务生成对联,或使用Docker镜像部署。
dopamine - 用于快速原型设计的强化学习研究框架
Github开源项目强化学习JAXDopamineDQNTensorflow
Dopamine是一个用于快速原型设计强化学习算法的研究框架,旨在便于用户进行自由实验。其设计原则包括易于实验、灵活开发、紧凑可靠和结果可重复。支持的算法有DQN、C51、Rainbow、IQN和SAC,主要实现于jax。Dopamine提供了Docker容器及源码安装方法,适用于Atari和Mujoco环境,并推荐使用虚拟环境。更多信息请参阅官方文档。
Tensorflow-Project-Template - 结合了简单性、文件夹结构的最佳实践和良好的 OOP 设计的简介深度学习项目模板
Github开源项目深度学习模板Tensorflow项目结构OOP设计
一个设计简洁的深度学习项目模板,结合了简单性、良好的文件夹结构和优秀的OOP设计,帮助开发者更快地启动主要项目,专注于核心部分(如模型和训练)。模板封装了常见功能,使得开发者仅需更改核心内容即可轻松启动新的TensorFlow项目。主要组件包括模型、训练器、数据加载器和日志记录器,提供详细的使用示例和项目架构图。
spleeter - 音乐源分离工具
Github开源项目PythonTensorflowSpleeter音频分离Deezer
Spleeter是Deezer开发的音乐源分离库,提供预训练模型,支持多种分离模式。适用于个人和专业音频处理,包括2声部、4声部及5声部模型。通过命令行或作为Python库使用,支持快速安装。此外,Spleeter还可通过Docker使用,兼容多种操作系统,为处理音频文件提供多种高效方案。
best-of-ml-python - 每周更新的优质Python机器学习开源项目列表
Github开源项目GitHubPython机器学习Tensorflow
Best-of Machine Learning with Python为您展示一份每周更新的优质Python机器学习开源项目列表,包括920个多种类别的项目,从而帮助开发者轻松访问和利用顶级的机器学习工具和框架。项目持续欢迎社区贡献,共同促进技术进步。
lingvo - Tensorflow中高效的序列模型神经网络构建框架
Github开源项目神经网络模型训练Tensorflow机器翻译Lingvo
Lingvo由Google维护的高质量框架,专用于在Tensorflow中构建神经网络,特别适用于序列模型的开发。此框架支持多种模型类型,包括自动语音识别、图片处理、语言建模和机器翻译等。Lingvo允许通过pip安装或源代码编译来灵活部署。借助详尽的文档和综合的模型库,用户可以轻松地构建、训练并评估自定义模型。此外,Lingvo还与最新版本的Tensorflow和Python兼容,确保与当前技术生态的同步。
tensorflow-nlp-tutorial - Tensorflow 2.0 自然语言处理实用教程
Github开源项目BERTTensorflowNLP딥 러닝KoGPT-2
此项目包含一系列基于Tensorflow 2.0的自然语言处理教程。教程内容详细,基于e-Book中的理论,涵盖BERT、KoGPT-2、CTM等模型的文本分类、生成、关键词提取和话题建模实操。用户通过Colab链接即可在线练习,无需额外安装Python。该项目持续更新,提供最新的自然语言处理技术和代码示例。
openai_lab - 提升强化学习效率的实验框架,兼容OpenAI Gym、Tensorflow和Keras
Github开源项目强化学习KerasTensorflowOpenAI GymOpenAI Lab
OpenAI Lab提供统一的强化学习环境和代理接口,内置主要强化学习算法。用户可轻松进行大量超参数优化实验,自动生成日志、图表和分析报告。实验设置采用标准化JSON格式,确保实验可重复且易于比较。支持自动分析实验结果,帮助选择最佳解决方案,专注于强化学习的关键研究,如算法、策略、记忆和参数调优。
fairness-indicators - Tensorflow 的公平性评估和可视化工具包
Github开源项目Tensorflow公平性指标模型评估Fairness Indicators二分类和多分类分类器
Fairness Indicators支持团队评估和改进模型的公平性,适用于二元和多分类模型。通过TensorFlow工具包,可以计算常见的公平性指标,并分析数据集分布及模型性能。该工具能处理大规模数据集,并提供信心区间和多阈值评估功能。Fairness Indicators与TensorFlow Data Validation、TensorFlow Model Analysis和What-If Tool紧密集成,助力优化模型。
fer - 面部表情识别与情绪检测的开源解决方案
Github开源项目PythonTensorflowOpenCV情感识别FER
FER是一个功能强大的开源面部表情识别工具,支持Python 3.6及以上版本,依赖OpenCV和TensorFlow进行表情检测。该工具能识别视频中的面部表情,输出JSON格式数据,支持MTCNN和Haar Cascade分类器,使情绪检测更为精准。通过简单的编程接口,可以快速在本地或通过TF Serving云端运行表情识别,适用于多种应用场景。
Gather-Deployment - Python 部署、基础设施与实践指南
Github开源项目DockerTensorflowFlaskKafkaPySpark
详细介绍Python部署与基础设施的内容,包括Tensorflow部署、简单后端、Apache技术栈、数据管道与实时ETL。涵盖Flask, Docker, Kafka, PySpark, PyFlink等多种技术和工具,并包含单元测试、压力测试、监控和映射方案,让开发者全面了解Python在实际应用中的场景。
pytorch-fid - 生成对抗网络图像质量评估工具
Github开源项目PyTorchTensorflowGANsFIDFréchet Inception Distance
pytorch-fid是一款用于计算生成对抗网络(GAN)样本质量的Fréchet Inception Distance(FID)分数的工具。该工具将官方的Tensorflow实现移植到PyTorch,确保相似的准确性和方便性。用户可以自由选择特征层,适应不同的数据集,还支持GPU加速和保存原始数据集的统计信息,便于进行多模型比较,适合研究和开发高质量图像生成模型。
DeepDanbooru - AI动漫图片标签预测工具
Github开源项目PythonTensorflowDeepDanbooru动漫图像标签训练项目
DeepDanbooru是一个用Python实现的AI工具,用于对动漫风格图片进行标签预测。通过TensorFlow进行训练和评估,支持使用Danbooru数据集或自定义数据集进行操作。
tensorflow-speech-recognition - 开源TensorFlow中的语音识别示例
Github开源项目深度学习Whisper语音识别TensorflowDeepSpeech
使用谷歌的TensorFlow框架进行语音识别,最初目标是为Linux系统创建独立的语音识别模型。尽管该项目现主要用于教学,开发者展示了使用开源数据和强大模型实现高效语音识别的潜力。推荐查看更新项目如Whisper和Mozilla的DeepSpeech,这两个项目在错误率方面的表现出色。该项目包含示例代码、依赖安装指导及功能扩展,如GPU上的WarpCTC和P2P学习模块。
torchinfo - 高级模型结构查看工具,适用于PyTorch
Github开源项目PyTorchAPITensorflowtorchinfomodel summary
Torchinfo 提供了类似 TensorFlow `model.summary()` API 的功能,可视化和调试 PyTorch 模型。支持包括 RNN 和 LSTM 在内的多种层,并返回 ModelStatistics 对象。项目拥有简洁界面、多种自定义选项和详细文档,适用于 Jupyter Notebook 和 Google Colab,且经过综合单元测试和代码覆盖测试验证。
lambda-packs - 支持各种工具和库的预编译AWS Lambda包
Github开源项目PyTorchTensorflowAWS LambdaScikit-learnSelenium PhantomJS
该项目提供了预编译的AWS Lambda包,涵盖了Selenium、Pyresttest、Lxml、TensorFlow、Sklearn、Skimage、OpenCV、Pandas、Spacy等流行工具和库。无论是网页抓取、API测试、HTML解析,还是机器学习、图像处理、统计分析和自然语言处理,都能满足各种需求。用户可以通过简单的无服务器部署,将这些包轻松集成到云基础设施中,从而显著降低测试成本并提高开发效率。
QRec - 跨平效推荐系统框架,集成前沿推荐模型
Github开源项目PythonTensorflow推荐系统协同过滤QRec
QRec是一个基于Python 3.7.4和Tensorflow 1.14+的推荐系统框架,集成了多种高影响力和最新的推荐模型。该框架具有轻量级架构和用户友好的接口,支持快速的模型实现和评估。QRec支持跨平台,包括Windows、Linux和Mac OS,基于Numpy和Tensorflow,运行速度快。用户可以通过配置文件轻松管理和扩展,同时提供多种评估协议。最新更新包括多个在顶级会议发表的模型,如SIGIR'22的SimGCL等。详细使用文档请参阅QRec手册。
Coloring-greyscale-images - 基于神经网络的黑白图像自动上色技术
Github开源项目KerasTensorflowGANNeural Networks图像上色
通过本教程,学习如何利用神经网络为黑白照片自动上色。从基础到高级的GAN版本,逐步增加网络复杂度和自动化训练流程。教程覆盖安装步骤、数据集推荐及使用指南,适合各级用户。
BMW-TensorFlow-Training-GUI - 简化TensorFlow 2模型训练的工具
Github开源项目GPUDockerTensorflowDeep LearningTensorBoard
此开源项目提供用户轻松开始TensorFlow 2深度学习模型训练的工具。用户仅需提供标注数据集,并通过TensorBoard监控训练过程。项目支持内置推理REST API,CUDA 11以及多GPU训练,推荐在Ubuntu 18.04和Google Chrome浏览器环境下使用。
attention-ocr - 基于注意力机制的视觉OCR模型,实现与导出工具
人工智能Github开源项目OCR图像识别TensorflowAttention-OCR
该项目提供了基于注意力机制的OCR模型,结合了CNN与LSTM,用于图像识别,并能够导出为SavedModel或frozen graph格式。用户可以通过生成TFRecords数据集、训练、测试及可视化等步骤完整运行该OCR系统。项目还支持通过Tensorflow Serving提供REST API服务,并可以在Google Cloud ML Engine上进行模型训练。目前该项目依赖Tensorflow 1.x,未来计划升级到Tensorflow 2。
deep-speaker - 深度学习语者嵌入系统,适用语者识别与验证
Github开源项目神经网络KerasTensorflowDeep Speaker说话人嵌入
本系统利用神经网络将语音映射到超球面,通过余弦相似度计算语音相似度,实现语者识别、验证与聚类。基于TensorFlow和Keras实现,支持多版本,提供可训练和预训练模型。适用于需大规模数据处理和高性能计算的用户,并提供详细的训练与测试指南。
MocapNET - 基于RGB图像的3D人体姿态实时估计
Github开源项目实时性能TensorflowMocapNET3D姿态估计RGB图像
MocapNET项目通过2D关节估计,将单目RGB图像转换为3D人体姿态,实现实时估计。它采用NSRM表示法、新的人体方位分类器和复合神经网络,能够在显著遮挡情况下精确恢复人体姿态。通过逆运动学解算器,MocapNET显著提升了人体姿态估计的准确性。最新的MocapNET v4版本用Python重写,支持3D凝视和BVH面部配置检索,并提供一键Google Collab部署和Blender 3D编辑器插件。项目不断更新,旨在提高其对社区的实用性和可访问性。
keras-attention - Keras 兼容的注意力层,支持 Luong 和 Bahdanau 评分函数
Github开源项目KerasTensorflowAttention LayerBahdanauLuong
Keras Attention Layer 支持 Luong 和 Bahdanau 的评分函数,与 Tensorflow 2.8 至 2.14 兼容。该层易于安装和使用,可根据需求调整参数,广泛应用于提高深度学习模型精度。提供丰富的实例和详细文档,包括在 LSTM 网络中的注意力机制实现,以及 IMDB 数据集和加数任务的实验数据。
mcfly - 简化时间序列深度学习的开源框架
Github开源项目深度学习Tensorflow时间序列分类mcfly回归分析
mcfly是一个开源的深度学习框架,专门用于时间序列分类和回归。它能直接处理原始数据,无需计算信号特征或专业领域知识,在加速度计数据的活动分类等任务中表现出色。该框架基于TensorFlow 2构建,支持Python 3.10和3.11,并提供可视化工具展示模型配置和性能。mcfly与传统机器学习技术相比具有竞争力,欢迎社区贡献。
resnetrs152.tf_in1k - ResNetRS-B模型提供的图像信息处理新选择
Github开源项目模型Tensorflow图像分类ImageNetHuggingfacetimmResNetRS-B
ResNetRS-B是一款图像分类模型,具备ReLU激活、单层7x7卷积池化和1x1卷积下采样功能。该模型由论文作者在ImageNet-1k上使用Tensorflow训练,拥有86.6M的参数量,支持320x320图像测试。其多功能性使其适用于图像分类、特征提取和图像嵌入任务,通过timm库可便捷地在Python中实现应用。