Project Icon

CVinW_Readings

聚焦计算机视觉在野外(Computer Vision in the Wild)这一新兴研究领域

CVinW_Readings项目聚焦计算机视觉在野外(Computer Vision in the Wild)这一新兴研究领域。项目提供CVinW简介并维护相关论文集。CVinW致力于开发易于适应广泛视觉任务的可转移基础模型,特点是广泛的任务转移场景和低转移成本。内容涵盖任务级转移、高效模型适应和域外泛化等研究方向的最新进展。

resources - IvLabs整理的AI和机器人学习资源库
AIGitHubGithubIvLabs学习资源开源项目机器人
IvLabs发起的开源项目,汇集了人工智能和机器人领域的精选学习资源。涵盖计算机视觉、控制理论、深度学习等多个方向的课程材料,同时提供软件技能、会议信息等辅助内容。资源经过筛选,致力于构建全面的知识体系。项目保持更新,接受高质量内容的贡献。
Awesome-ECCV2024-ECCV2020-Low-Level-Vision - ECCV底层视觉研究论文与代码汇总
ECCVGithub图像处理底层视觉开源项目计算机视觉论文收集
本资源库汇集了ECCV2024和2020年底层视觉领域的论文及代码。涵盖超分辨率、图像去雨、去雾、去模糊、去噪、恢复和增强等多个研究方向。项目提供了便捷的平台,使研究人员和开发者能够快速获取最新成果。此外,仓库还链接了CVPR、ICCV等相关会议论文集,以及底层视觉和AIGC研究组的整理资料。
best_AI_papers_2022 - 2022年AI领域的关键研究与技术进展
AIGithub图像生成开源项目文本到图像模型深度学习
2022年人工智能领域的科研进展和技术发展。这个集合包含了通过严格策划得到的多篇AI论文,由专家louisfb01整理,每篇论文均提供视频概述、详细文章链接和实现代码,覆盖伦理、偏见和治理等多个关键议题。
CLIP-ReID - 基于CLIP的无标签图像重识别新方法
CLIP-ReIDGithub人工智能图像重识别开源项目视觉语言模型计算机视觉
CLIP-ReID提出了一种无需具体文本标签的图像重识别新方法。该方法基于CLIP视觉-语言模型,结合CNN和ViT架构,并运用SIE和OLP等技术进行优化。在MSMT17等多个基准数据集上,CLIP-ReID展现了领先的性能,为图像重识别领域开辟了新的研究方向。
gluon-cv - 计算机视觉领域的深度学习模型工具包,支持PyTorch和MXNet框架
GithubGluonCV图像分类对象检测开源项目深度学习计算机视觉
GluonCV是一个面向工程师、研究人员和学生的计算机视觉深度学习工具包,支持快速原型设计。其主要功能包括可复现SOTA结果的训练脚本、对PyTorch和MXNet框架的支持、大量预训练模型,以及简化实现的API设计和社区支持。用户还可以通过AutoGluon执行图像分类和目标检测任务。
Awesome-Open-Vocabulary-Semantic-Segmentation - 开放词汇语义分割研究成果汇总
CLIPGithub开放词汇开源项目深度学习计算机视觉语义分割
这是一个汇总开放词汇语义分割领域研究成果的项目。内容涵盖全监督、弱监督和无需训练等多种方法,同时收录零样本语义分割、指代图像分割和开放词汇目标检测等相关任务的论文。项目旨在为研究者提供该领域的最新进展概览。
AISP - 深度学习应用于低级别计算机视觉与成像技术
AI Image Signal ProcessingComputational PhotographyGithubRAW图像处理图像增强多镜头散景效果开源项目
AISP项目聚焦于低级别计算机视觉和成像的深度学习应用,涵盖RAW图像处理、RAW重建与合成、学习型图像信号处理(ISP)、图像增强与恢复(如去噪和去模糊),以及多镜头散景效果渲染。项目亮点包括高效的散景效果渲染、适用于智能手机的实时感知图像增强、结合模型和数据驱动的ISP设计,以及AIM 2022 RAW重建挑战的解决方案。该项目定期更新,保持领域的前沿进展。
Multimodal-AND-Large-Language-Models - 多模态与大语言模型前沿研究综述
Github人工智能多模态大语言模型开源项目机器学习视觉语言模型
本项目汇总了多模态和大语言模型领域的最新研究进展,涵盖结构化知识提取、事件抽取、场景图生成和属性识别等核心技术。同时探讨了视觉语言模型在推理、组合性和开放词汇等方面的前沿问题。项目还收录了大量相关综述和立场文章,为研究人员提供全面的领域概览和未来方向参考。
YOLO-World - 下一代实时开放词汇目标检测模型
GithubYOLO-World开放词汇开源项目目标检测零样本学习预训练模型
YOLO-World是一款创新的实时开放词汇目标检测模型。经过大规模数据集预训练,它展现出卓越的开放词汇检测和定位能力。采用'先提示后检测'范式,YOLO-World通过重参数化技术实现高效的自定义词汇推理。该模型支持零样本目标检测、分割等多种任务,并开源了在线演示、预训练权重和微调代码,为计算机视觉领域提供了实用的研究与应用工具。
cross-image-attention - 跨图像注意力机制实现零样本外观迁移
Cross-Image AttentionGithub图像生成开源项目自注意力机制语义对应零样本外观迁移
该项目开发了一种跨图像注意力机制,实现了零样本外观迁移。这种方法利用生成模型的语义理解,在保持目标结构的同时,将外观应用到不同形状的对象上。该技术适用于多种对象类别,对形状、大小和视角变化具有适应性。项目提供了代码实现、使用指南和演示,便于研究人员探索和应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号