Project Icon

VideoLLaMA2

增强视频理解的多模态语言模型

VideoLLaMA2是一款先进的视频语言模型,通过增强空间-时间建模和音频理解能力,提高了视频问答和描述任务的性能。该模型在零样本视频问答等多项基准测试中表现出色。VideoLLaMA2能处理长视频序列并理解复杂视听内容,为视频理解技术带来新进展。

Llama-3.2-90B-Vision-Instruct - Meta开发的多模态大语言模型实现图像理解与视觉推理
GithubHuggingfaceLlama 3.2-VisionMeta图像识别多模态大语言模型开源项目模型自然语言处理
Llama-3.2-90B-Vision-Instruct是Meta开发的多模态大语言模型,用于图像理解和视觉推理。该模型基于Llama 3.1构建,集成视觉适配器,支持图像和文本输入。在视觉识别、图像推理、描述和问答方面表现优异,超越多数多模态模型。模型具有128K上下文长度,采用60亿(图像,文本)对训练,知识覆盖至2023年12月。
llama - 开源大语言模型推动自然语言处理发展
GithubLlamaMeta人工智能大语言模型开源开源项目
Llama 2是Meta公司开发的开源大语言模型系列,提供7B至70B参数的预训练和微调模型。该项目为研究和商业用途提供模型权重和代码,支持多样化的自然语言处理应用。Llama 2注重负责任的AI发展,实施严格的使用政策。项目包含多个仓库,构建了从基础模型到端到端系统的完整技术栈,为AI领域的创新和应用提供了重要支持。
Awesome-Multimodal-LLM - 大语言模型(LLM)在多模态学习中的最新研究趋势
GithubLLM多模态学习开源开源项目模型微调神经网络
本页面介绍大语言模型(LLM)在多模态学习中的最新研究趋势,包括文本、视觉(图像和视频)、音频等多种模态。重点讨论如LLaMA、Alpaca和Bloom等开源且适合研究的LLM骨干模型及其学习方法,如全量微调、参数有效微调、上下文学习等。同时列举了具体的多模态LLM模型实例,如OpenFlamingo和MiniGPT-4,以及评估方法,如MultiInstruct和POPE,提供科研人员了解和研究LLM引导多模态学习的资源。
llava-llama-3-8b-v1_1-gguf - 基于Llama-3的8B参数多模态模型实现图文交互
GithubHuggingfaceLLaVAXTuner图像理解大模型微调开源项目模型视觉语言模型
这是一个基于Llama-3和CLIP视觉模型构建的多模态系统,采用GGUF格式优化部署效率。模型在MMBench、CCBench等多个基准测试中展现了优秀的图像理解和文本生成能力。通过ollama或llama.cpp框架,可实现快速本地部署和图文交互功能。
nanoLLaVA - 轻量级视觉语言模型实现边缘设备高效部署
GithubHuggingfacenanoLLaVA人工智能多模态开源项目机器学习模型视觉语言模型
nanoLLaVA是一款1B级视觉语言模型,结合Quyen-SE和SigLIP视觉编码器技术。该模型在VQA v2和TextVQA等视觉问答测试中表现优异,同时优化了在边缘设备上的运行效率。nanoLLaVA采用ChatML标准,支持图像描述和视觉问答功能,并提供简洁的API接口,方便开发者集成到不同应用场景。
Llama-2-70b-hf - Meta开发的70亿参数开源大语言模型 支持多样化自然语言处理任务
GithubHuggingfaceLLAMA 2人工智能大语言模型开源开源项目模型自然语言处理
Llama-2-70b-hf是Meta开发的70亿参数大语言模型,基于优化的Transformer架构,支持4k上下文长度。模型在2万亿token公开数据上预训练,通过监督微调和人类反馈强化学习实现对话能力。在多项基准测试中表现优异,适用于对话、问答、推理等自然语言处理任务。作为开源发布的基础模型,为学术研究和商业应用提供了有力支持。
Awesome-Multimodal-Large-Language-Models - 多模态大语言模型研究资源与最新进展汇总
Github多模态大语言模型开源项目指令微调模型评估视觉语言模型视频理解
该项目汇总了多模态大语言模型(MLLMs)领域的最新研究成果,包括论文、数据集和评估基准。涵盖多模态指令微调、幻觉、上下文学习等方向,提供相关代码和演示。项目还包含MLLM调查报告及MME、Video-MME等评估基准,为研究人员提供全面参考。
Video-MME - 全面评估多模态大语言模型视频分析能力的基准
GithubVideo-MME人工智能基准评估多模态大语言模型开源项目视频分析
Video-MME是一个创新的多模态评估基准,用于评估大语言模型的视频分析能力。该项目包含900个视频和2,700个人工标注的问答对,覆盖多个视觉领域和时间跨度。其特点包括视频时长多样性、类型广泛性、数据模态丰富性和高质量标注。Video-MME为研究人员提供了一个全面评估多模态大语言模型视频理解能力的工具。
MiniGPT4-video - 提升视频理解的创新多模态语言模型
GithubGoldfishMiniGPT4-Video多模态开源项目视频理解长视频
MiniGPT4-Video项目采用交错视觉-文本标记技术,大幅提升了多模态大语言模型的视频理解能力。该模型在短视频理解方面表现优异,多项基准测试中均优于现有方法。项目还开发了Goldfish框架,专门应对任意长度视频的处理难题,有效解决了长视频理解中的噪声、冗余和计算挑战。这些创新成果为视频分析和理解领域开辟了新的可能性。
Chinese-LLaMA-Alpaca-2 - 基于Meta发布的可商用大模型Llama-2开的中文LLaMA&Alpaca大模型的第二期项目
Chinese-LLaMA-Alpaca-2FlashAttention-2Github中文词表大模型开源项目长上下文
Chinese-LLaMA-Alpaca-2项目基于Meta的Llama-2模型开发,提供了全新的中文LLaMA-2基座模型和Alpaca-2指令精调大模型,专注于优化中文词表和扩展模型训练。模型支持大规模中文数据增量训练,显著提升中文语义和指令理解能力。支持4K至64K上下文长度,实现人类偏好对齐,提供多种工具支持部署和应用推广。适用于企业和研究机构进行语言模型深度研发和实用应用,如对话系统和文本分析等。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号