Project Icon

HyperTS

全面的时间序列分析工具包 支持多任务和多模式分析

HyperTS是一款全面的时间序列分析工具包,集成了统计模型、深度学习和神经架构搜索。它支持预测、分类、回归和异常检测等多种任务,适用于复杂的时间序列分析场景。该工具包提供多变量和协变量支持,概率区间预测,以及丰富的预处理、评估指标和搜索策略。HyperTS简单易用,为时间序列分析提供了端到端的自动化解决方案。

neural_prophet - 易用的开源时间序列预测框架
GithubNeuralProphetPyTorch开源项目时间序列预测模型构建
NeuralProphet是一个基于PyTorch的开源框架,将神经网络与传统时间序列算法结合,专为时间序列预测而设计。它提供简便的代码接口,支持模型定制、趋势检测、季节性分析和事件影响评估,适合高频次和长期数据。项目仍在beta阶段,欢迎社区贡献。
moment - 时间序列分析基础模型 多任务多领域应用
GithubMOMENT基础模型多任务开源项目时间序列预训练
MOMENT是一个开源的时间序列分析基础模型家族,为多任务、多数据集和多领域应用而设计。该模型在大规模时间序列数据上预训练,可处理预测、分类、异常检测和插补等任务。MOMENT能捕捉时间序列的内在特征,学习有意义的数据表示,在少量标记数据的情况下也表现出色。项目提供预训练模型、教程和研究代码,为时间序列分析提供了实用工具。
hypertools - 简化高维数据可视化和分析的Python工具包
GithubHyperToolsPython工具包开源项目数据可视化降维高维数据
HyperTools是一个用于高维数据可视化和分析的Python工具包。它能够将复杂的高维数据集降维,并生成直观的可视化结果。该工具包整合了matplotlib、scikit-learn和seaborn等库,提供数据对齐、聚类和描述等功能。HyperTools主要面向需要分析复杂数据结构的数据科学家和研究人员。
tsbs - 开源时间序列数据库性能测试工具集
GithubTSBS基准测试开源项目性能测试数据库时间序列
TSBS是一个开源的时间序列数据库基准测试工具集,支持多种主流数据库如TimescaleDB和InfluxDB。它可模拟DevOps和IoT场景,生成测试数据并评估数据写入和查询性能。TSBS提供了完整的测试流程,包括数据生成、加载和查询执行,有助于用户全面评估和选择最适合需求的时间序列数据库。
tods - 多变量时间序列的自动化异常检测系统
GithubTODS多变量数据开源项目异常检测时间序列自动机器学习
TODS是一个专注于多变量时间序列数据异常检测的全栈自动化机器学习系统。它提供数据处理、时间序列处理、特征分析等全面模块,支持点级、模式级和系统级三种检测场景。TODS的主要特点包括全栈机器学习功能、广泛的算法支持,以及能够自动搜索最佳模块组合构建最优管道的自动化机器学习能力。
EasyTemporalPointProcess - 灵活可配置的时序点过程开源工具包 支持多框架和结果复现
EasyTPPGithub事件预测开源工具包开源项目时间点过程机器学习
EasyTemporalPointProcess是一个用于时序点过程开发和应用的开源工具包。该工具包具有配置灵活、兼容性强和结果可复现等特点,支持多种先进TPP模型,提供预处理数据集和超参数优化功能。EasyTPP同时兼容TensorFlow和PyTorch框架,可用于学术研究和工业实践。研究人员和从业者可以利用它轻松定制TPP模型并进行开放基准测试。
tspiral - 优化时间序列预测的Python工具包
GithubPython包scikit-learntspiral开源项目时间序列预测机器学习
tspiral是一个专注于时间序列预测的Python工具包,提供多种优化技术如递归预测、直接预测、堆叠预测和修正预测。它与scikit-learn兼容,支持全局和多变量时间序列预测,并提供简洁API。tspiral将复杂的时间序列问题转化为表格式监督回归任务,方便用户利用scikit-learn生态系统进行预测分析。
awesome-AI-for-time-series-papers - 时间序列分析领域的人工智能前沿研究与资源集锦
AIGithub开源项目数据挖掘时间序列机器学习深度学习
这是一个全面收录人工智能在时间序列分析(AI4TS)领域最新研究成果的资源库。项目汇集了顶级AI会议和期刊发表的论文、教程和综述,涉及时间序列、时空数据、事件数据等多个方面。资源库实时更新NeurIPS、ICML、KDD等重要会议的相关论文,为AI4TS领域的研究人员和工程师提供了丰富且及时的学术参考。
chronos-t5-tiny - 轻量级时间序列预测模型 基于T5架构设计
Chronos-T5GithubHuggingface开源项目时间序列预测概率预测模型语言模型架构预训练模型
Chronos-T5-Tiny是一款轻量级时间序列预测模型,基于T5架构设计。该模型将时间序列转换为token序列进行训练,能够生成概率性预测并支持多轨迹采样。与原始T5相比,Chronos-T5-Tiny仅使用4096个不同token,参数量减少至800万,更加精简高效。研究人员和开发者可通过简洁的Python接口快速应用此模型进行时间序列分析。
TimeMixer - 多尺度混合技术推动时间序列预测新突破
GithubICLRMLP架构TimeMixer多尺度混合开源项目时间序列预测
TimeMixer是一种基于MLP架构的时间序列预测模型,通过多尺度混合技术实现长短期预测的性能突破。该模型利用Past-Decomposable-Mixing和Future-Multipredictor-Mixing模块处理多尺度时间序列,在多个基准数据集上展现出优异性能。TimeMixer不仅预测精度高,还具备良好的运行效率,适用于多种要求高效预测的应用场景。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号