Project Icon

HyperTS

全面的时间序列分析工具包 支持多任务和多模式分析

HyperTS是一款全面的时间序列分析工具包,集成了统计模型、深度学习和神经架构搜索。它支持预测、分类、回归和异常检测等多种任务,适用于复杂的时间序列分析场景。该工具包提供多变量和协变量支持,概率区间预测,以及丰富的预处理、评估指标和搜索策略。HyperTS简单易用,为时间序列分析提供了端到端的自动化解决方案。

AutoTS - 自动化时间序列预测工具
AutoTSGithubPython包开源项目数据分析时间序列预测自动机器学习
AutoTS是一个Python时间序列预测工具,专注于快速部署高精度预测模型。该工具在2023年M6预测竞赛中表现出色,支持多种预测模型和数据转换方法。AutoTS能够处理多变量输出和概率预测,通过自动机器学习寻找最佳模型组合。它适用于大规模数据集,提供横向和马赛克风格的集成方法,以及丰富的指标、交叉验证和数据处理功能。
Auto_TS - 自动构建和选择多种时间序列模型的高效工具
Auto_TSGithubProphet开源项目时间序列模型自动化机器学习预测
Auto_TS是一个时间序列自动建模工具,支持ARIMA、SARIMAX、VAR、分解模型和机器学习模型等多种技术。它能自动构建和选择最佳模型,适用于不同频率的数据,并提供灵活的参数设置。Auto_TS支持交叉验证和预测功能,简化了建模过程,提高了效率。该工具适合数据分析人员使用,可通过简单的代码实现复杂的时间序列建模任务。
BasicTS - 公平且标准的时间序列预测基准和工具包
BasicTSGithub基准测试工具包开源项目时间序列预测深度学习
BasicTS是一个开源的时间序列预测基准和工具包,支持空间-时间预测和长时间序列预测等任务。它提供统一标准的评估流程,实现对主流深度学习模型的公平对比。BasicTS还提供易用的接口,便于设计和评估新模型。该项目内置多个数据集和基线模型,支持多种计算设备,并有完善的日志系统。BasicTS致力于推动时间序列预测研究的发展。
UniTS - 统一时间序列模型实现多领域任务处理
GithubUniTS多任务学习开源项目时间序列模型迁移学习零样本学习
UniTS是一种统一的时间序列模型,可处理多领域的分类、预测、插补和异常检测任务。该模型使用共享参数方法,无需任务特定模块,在38个多领域数据集上表现优异。UniTS具有零样本、少样本和提示学习能力,能适应新的数据领域和任务。其创新的统一网络主干融合了序列和变量注意力机制以及动态线性运算符,为时间序列分析提供了灵活的解决方案。
Time-series-prediction - 多功能的TensorFlow时间序列预测平台
GithubTFTSTensorFlow开源项目时间序列深度学习预测
TFTS(TensorFlow Time Series)是一个易用的时间序列预测工具包,支持TensorFlow和Keras中的经典及前沿深度学习方法。适用于预测、分类及异常检测任务。提供适应工业、研究和竞赛所需的深度学习模型,配有详尽文档和教程,帮助用户快速入门。
gluonts - 基于深度学习的概率时间序列建模工具包
GithubGluonTSPython开源项目时间序列预测概率模型深度学习
GluonTS是一个基于Python的时间序列建模库,专注于采用深度学习方法进行概率预测。支持多种深度学习框架,包括PyTorch和MXNet,提供易于安装和使用的特性。适用于多种应用场景,如商业分析和数据科学。由一个积极的开源社区维护和发展。
pytorch-ts - 概率时间序列预测开源框架
GithubPyTorchPyTorchTS开源项目时间序列预测概率模型深度学习
PyTorchTS是一个基于PyTorch的开源时间序列预测框架,利用GluonTS作为后端API。它提供先进的概率模型,支持数据处理和回测。该框架适用于单变量和多变量时间序列预测,安装简便,易于使用。PyTorchTS为数据科学家和研究人员提供了高效的时间序列分析工具。
Time-Series-Library - 开源深度学习时间序列分析工具库
GithubTSLib开源项目异常检测时间序列深度学习预测
TSLib为深度学习研究者提供了一个专业开源时间序列分析库,涵盖广泛的应用领域,如长短期预测、数据填充、异常检测和分类。本库提供清晰的代码基础,支持时间序列模型的评估与开发,包括最新的模型评估和深度时间序列研究成果。该工具适合科研和开发人员使用,以推动时间序列分析的未来研究与实践。
PaddleTS - 基于飞桨的开源时序分析库 提供全面深度学习模型
GithubPaddlePaddlePaddleTSPython库开源项目时序建模深度学习
PaddleTS是基于飞桨框架的时序建模库,专注深度学习模型。它提供统一数据结构和基础功能封装,内置多种先进模型和数据转换工具。支持自动调优、第三方集成、GPU加速和集成学习。涵盖预测、表征、异常检测等任务,为时序分析提供全面解决方案。
modeltime - R语言时间序列预测框架 整合机器学习与传统方法
GithubR语言modeltime工作流开源项目时间序列预测机器学习
modeltime是R语言的时间序列预测框架,简化了预测工作流程,整合机器学习和传统分析方法。支持ARIMA、ETS、Prophet等模型,可与tidymodels生态系统集成。通过6步流程,用户可快速构建、评估和部署预测模型,适用于高性能时间序列分析。框架还包括modeltime.h2o用于AutoML、modeltime.gluonts用于深度学习,以及modeltime.ensemble用于集成预测。这些组件共同构成了一个全面的时间序列分析生态系统,为不同规模和复杂度的预测任务提供解决方案。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号