Project Icon

HyperTS

全面的时间序列分析工具包 支持多任务和多模式分析

HyperTS是一款全面的时间序列分析工具包,集成了统计模型、深度学习和神经架构搜索。它支持预测、分类、回归和异常检测等多种任务,适用于复杂的时间序列分析场景。该工具包提供多变量和协变量支持,概率区间预测,以及丰富的预处理、评估指标和搜索策略。HyperTS简单易用,为时间序列分析提供了端到端的自动化解决方案。

microprediction - 多功能时间序列预测和优化开源工具集
Githubmicroprediction开源项目时间序列预测算法优化金融预测
microprediction是一个综合性开源项目集,专注于时间序列预测和优化。该项目提供多个Python库,包括humpDay、timemachines和precise,分别用于无导数优化器评估、增量时间序列预测和协方差估计。这些工具能帮助提高预测精度和模型性能。项目还包含丰富的基准测试和评估工具,便于比较不同方法的效果。适用于数据科学研究和实际应用场景。
uni2ts - 时间序列预测Transformer模型的统一训练框架
GithubPyTorchTransformerUni2TS开源项目时间序列预测预训练模型
Uni2TS是一个基于PyTorch的开源库,专门用于时间序列Transformer的研究和应用。它提供了统一的大规模预训练解决方案,支持微调、推理和评估。该库集成了零样本预测、自定义数据集处理和全面评估功能,并提供简化的命令行界面。Uni2TS旨在推动时间序列预测领域的进展,适用于研究和实际应用场景。
deeptime - Python时间序列分析与动态建模库
Githubdeeptime动力学模型开源库开源项目时间序列分析机器学习
deeptime是一个专注于时间序列数据分析的Python库,集成了多种动态模型估计工具。该库涵盖传统线性学习方法(如马尔可夫状态模型、隐马尔可夫模型和Koopman模型)及先进的核方法和深度学习技术。与scikit-learn兼容的同时,deeptime还提供了独特的Model类,用于分析热力学、动力学和其他动态特性。该库支持多平台安装,适用于各类时间序列数据研究。
deephyper - 自动化机器学习任务的开源优化框架
DeepHyperGithub开源项目机器学习自动化深度集成神经架构搜索超参数优化
DeepHyper是一个专注于自动化机器学习任务的Python开源框架。它提供了超参数优化、神经网络架构搜索和深度集成不确定性量化等功能。支持单机和分布式环境,适用于多种场景。DeepHyper简化了机器学习工作流程,为研究人员和开发者提供了强大的工具。项目包含详细文档、快速入门指南和活跃的社区支持,方便用户快速上手和深入使用。
nixtla - 精准的时间序列预测和异常检测,适用于多领域的生成式预训练模型
GithubTimeGPT开源项目异常检测时间序列零样本推理预测
TimeGPT是一款生成式预训练模型,专注于时间序列分析,支持零样本推断。该模型可应用于零售、电力、金融、物联网等多个领域,通过简洁的代码实现精准的预测与异常检测。TimeGPT提供灵活的API访问,兼容多种编程语言和平台。基于大规模数据集的训练,它在多种频率下的预测表现卓越,特别适合需要快速、精确时间序列分析的应用。
tslearn - Python时间序列分析机器学习库
GithubPython库tslearn开源项目数据预处理时间序列分析机器学习
tslearn是一个开源的Python库,专注于时间序列分析和机器学习。它提供数据预处理、分类、聚类、回归和多种距离度量方法。支持可变长度时间序列,兼容scikit-learn,包含UCR数据集和数据生成器。tslearn适用于需要进行时间序列分析的数据科学工作,支持超参数调优和管道等功能,为研究和实践提供全面工具支持。
sktime - 多功能时间序列分析和预测库
GithubPython库sktime开源项目时间序列分析机器学习统一接口
sktime是一个开源的Python时间序列分析库,为多种时间序列学习任务提供统一接口。它支持时间序列分类、回归、聚类、标注和预测等功能,并提供专门的时间序列算法和兼容scikit-learn的工具。sktime还整合了多个相关库的接口,便于用户在不同时间序列任务间迁移算法。
TSDB - 高效便捷的时间序列数据集加载库
GithubPyPOTSTSDB开源工具开源项目数据挖掘时间序列数据集
TSDB是一个时间序列数据集加载库,支持172个公开数据集的一键加载。该工具简化了研究人员和工程师的数据获取流程,使他们能专注于数据处理。TSDB具备数据下载、加载和缓存管理功能,并支持缓存目录迁移。作为PyPOTS工具箱的组成部分,TSDB为时间序列数据挖掘提供了基础支持。
TFB - 时间序列预测评估框架
GithubTFB基准测试开源库开源项目时序预测评估框架
TFB是一个为时间序列预测研究设计的开源库。它提供清晰的代码库,支持对预测模型进行端到端评估,并通过多种策略和指标比较模型性能。TFB特点包括多样化数据集、全面基线模型、灵活评估策略和丰富评估指标。研究人员可利用TFB开发新方法或评估自有时间序列数据。
Large-Time-Series-Model - 大规模生成式预训练时间序列模型
GithubTimerTransformer大规模数据集开源项目时间序列模型预训练
Timer是一款基于生成式预训练Transformer的大规模时间序列模型。该模型在包含10亿时间点的UTSD数据集上预训练,可用于预测、插值和异常检测等多项任务。Timer采用解码器架构,支持灵活序列长度,在少样本场景下表现优异。项目开源了模型代码、数据集和预训练权重,为时间序列大模型研究奠定基础。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号